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Abstract

In this work, we consider condensed matter phenomena in the early Universe. We focus mainly on the

effects of quenched disorder during inflation. We draw analogies between early Universe cosmology and

emergent phenomena. We suggest considering disorder as a classically sourced effect on wave-modes

around the horizon crossing. Improving previous work in this area, we apply a tool from condensed

matter physics to early Universe cosmology and calculate corrections to the two-point correlation func-

tion for fluctuations. We then turn our attention to the microscopic physics of the early Universe and

suggest non-equilibrium quantum field theory formalism for the study of disorder in the early Universe.
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Chapter 1

Introduction

The success of observational cosmology in the past decade has promoted this area to what may soon be
called precision science. With the recent results from Planck satellite; most cosmological parameters
are now measured up to order of few percents of error [1]. Moreover, Planck showed that the early
Universe is very isotropic and homogeneous with only very little deviations, on the order of O(10−5).
However, there is still much we do not understand about the physics of the early Universe that gave rise
to this isotropy and homogeneity we now measure. Much effort has been made in the past few decades
to improve our understanding of this era. With the ever increasing scientific precision of observational
cosmology, it is undeniably a very exciting time to study the early Universe as it might not be too
distant in the future that we begin getting some answers. In what follows, we will be motivated with
these ideas.

Perhaps one of the few things that is well understood about early Universe is that it necessarily involves
extreme events that ultimately lead to the Universe we now live in. In this work, we will focus on the
most extreme of these, inflation. Although inflation has been essential in our better understanding of
early Universe, there is still much about it that is speculative. It is suggestive, however, that this is
not due to our lack of theoretical understanding but more likely due to our limitations in observations.
From a phenomenological perspective, the study of inflation allows us to formulate and predict distinct
signatures of the primordial dynamics that is manifest in our observations of the early Universe and
also the large scale structure. There has been many studies on inflation with ever increasing range
of applications and sophistication. Here, we will make an attempt towards adding to our current
understanding of inflationary phenomena through considering analogies between condensed matter
physics and early Universe cosmology.

Searching for dualities between condensed matter and other branches of physics is in fact quite common
in modern theoretical research. This is perhaps even more apparent from the point of view of the
complexity science. We define complexity as the study of large scale behaviour of complicated dynamics
via universal characteristics and emergent phenomena. In this paper, complexity reflects to our analysis
of the early Universe as studying the phenomena such as localisation and percolation along with coarse-
grained statistical effects due to underlying fundamental physics. One such mechanism that we focus
throughout the paper is disorder. Disorder is a very general phenomena and especially the study of
quenched disorder in the past few decades has largely shaped the contemporary research in condensed
matter physics and many other areas of science. However, in early Universe cosmology, it is possible
that this phenomena is somewhat overlooked. This is perhaps even more apparent considering inflation.
In this paper, we take a step towards studying disorder in the early Universe from the perspective of
condensed matter physics.

Due to the suggestive inadequacy of the available tools in early Universe cosmology, our quantitative
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efforts in this paper consists mainly of introducing and reviewing various formalisms with which one
can study disorder. Condensed matter physics provides a collection of strong tools well developed
for analysing a wide variety of systems and their dynamics. Depending on the details of the disorder
phenomena, the dynamics of a condensed matter system may show distinctive properties. Here, we give
attention to the quenched characteristic of disorder. Quenching leads us to consider methods beyond
the perturbation theory as it can drive a system out-of equilibrium. In recent years, the studies of
non-equilibrium systems at extreme conditions has gained much attention in the condensed matter
community. In early Universe cosmology, a direct analogue of these systems can be found in the study
of the phenomena following inflation [2, 3]. In this paper we also will consider the effects of disorder
during inflation.

In Chapter §2 we begin with a pedagogical review of the relevant methods and techniques in modern
cosmology. There, we introduce the flat FRW universe, review the dynamics of inflation and then
introduce cosmological perturbation theory. In Section §2.5 we introduce the effective field theory
(EFT) of inflation. The EFT of inflation plays a central role in establishing analogies between the
early Universe cosmology and condensed matter physics. We discuss this reasoning in Chapter §3
where we also review some of the methods available to condensed matter physics. There, we focus
on disorder in relation to the emergent phenomena and discuss the contemporary efforts in condensed
matter physics. We conclude Chapter §3 by introducing the so called replica field theory developed for
calculating statistical properties of disordered classical systems. In Chapter §4 we begin by deriving
a general expression for the correlation functions of a system with disorder. Next in Section §4.2,
we consider classical applications of the replica field theory method to de Sitter spacetime and to
the super-horizon dynamics during inflation. There, we calculate the corrections to the two-point
correlation functions of the scalar field driving inflation. In addition to our calculations for the scalar
field, we also apply this method to EFT of inflation. Lastly in Section §4.3, we take a step towards
studying the effects of disorder on sub-horizon microscopic physics during inflation. There, we first
review the perturbative treatment of disorder using the EFT formalism. We then take a look into
the cosmological in-in path integral description in order to go beyond the perturbation theory. We
conclude the review of quantum field theory extension of the applications of disorder in the early
Universe by reviewing the non-equilibrium quantum field theory; effective action formalism. We give
a conclusion in Chapter §5.



Chapter 2

Cosmology

In this chapter we will review some of the topics in modern cosmology. We will be following most
closely [4–6].

2.1 The Homogeneous Universe
2.1.1 FRW Spacetime
Following translational invariance (homogeneity) and rotational invariance (isotropy), one arrives at
the Friedmann-Robertson-Walker (FRW) metric for the spacetime of the Universe:

ds2 = −dt2 + a2(t)( dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2) ) . (2.1)

The expression inside the large brackets, also written as dΣ2, is the spatial metric. The scale factor a(t)
characterises the relative size of the three dimensional space of uniform curvature (hypersurface) Σ at
different times. The curvature parameter k is +1 for positively curved (elliptical) space, 0 for flat (Eu-
clidean) space and −1 for negatively curved (hyperbolic) space. The parameter dΣ is independent of
time and all time dependence is on a(t) which expands with the Universe. An important parameter
in FRW spacetime is the expansion rate

H ∶= ȧ
a

(2.2)

where H is called the Hubble parameter and has units of inverse time. This parameter sets the
fundamental scale of the FRW spacetime, i.e. the characteristic time and length t ∼ d ∼H−1 (with
natural units c = 1). Hubble parameter H is positive (negative) for an expanding (collapsing) universe.
Finally, the number of e-folds of the expansion is given as

N = ∫ Hdt . (2.3)

2.1.2 Conformal time and horizon
Trajectories of massless photons follow null geodesics, ds2 = 0, which may be studied most easily by
defining a conformal time

τ = ∫
dt
a(t) . (2.4)

With this definition, radial propagation of light in the FRW universe becomes

ds2 = a(τ)2[−dτ2 + dχ2] , (2.5)

3



2.1. The Homogeneous Universe 4

where the metric is now factorised into a static Minkowski metric multiplied by the conformal factor
a(τ). In this representation, the null geodesics of light follows straight lines at ±45○ angles in the τ −χ
plane corresponding to the light cone. The largest comoving distance light can travel between an initial
time ti and some later time t is

χp(τ) = τ − τi , (2.6)

and it is called the comoving particle horizon. The physical size of the particle horizon is

dp(t) = a(t)χp . (2.7)

Finally the event horizon is defined for comoving coordinates that satisfy

χ > χe = τmax − τ , (2.8)

where τmax is some final time.

2.1.3 FRW Dynamics
Dynamics of the Universe is determined by the Einstein Equations

Gµν = 8πTµν . (2.9)

To calculate the energy momentum tensor of the Universe Tµν , we define a timeline velocity 4-vector

uµ ∶= dxµ

dτ
, (2.10)

where τ is the proper time, i.e. gµνuµuν = −1. For a perfect fluid equations for Tµν simplifies to give

Tµν = (ρ + p)uµuν − pδµν , (2.11)

where ρ and p are the proper energy density and pressure in fluid rest frame. Choosing a frame that
is comoving with the fluid uµ = (1,0,0,0), the stress energy tensor becomes

Tµν = diag(ρ,−p,−p,−p) . (2.12)

With this definition, Einstein equations take the form of two coupled non-linear ordinary differential
equations called Friedman Equations

H2 ∶= ( ȧ
a
)

2

= 1

3
ρ − k

a2
and Ḣ +H2 = ä

a
= −1

6
(ρ + 3p) , (2.13)

where over-dots denote derivatives with respect to physical time t. For an expanding universe ȧ > 0
filled with ordinary matter (ρ + 3p ≥ 0) Eqn. (2.13) implies ä < 0, indicating a singularity in the finite
past a(t ≡ 0) = 0. These equations can be combined into a continuity equation

dρ
dt

+ 3H(ρ + p) = 0 , (2.14)

which may also be written as
d lnρ

d lna
= −3(1 + ω) (2.15)

where we have defined the equation of state parameter

ω ∶= p
ρ
. (2.16)
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Integrating Eqn. (2.15) we get
ρ∝ a−3(1+ω) . (2.17)

Combining this equation with Eqn. (2.13) we get the time evolution of the scale factor

a(t) =
⎧⎪⎪⎨⎪⎪⎩

t2/3(1+ω) ω ≠ −1 ,

eHt ω = −1 ,
(2.18)

where we find for the scale factor of a flat universe, i.e. k = 0 in Eqn. (2.1) , non-relativistic matter
domination (ω = 0) gives a(t) ∝ t2/3, radiation or relativistic matter domination (ω = 1/3) gives
a(t) ∝ t1/2 and a cosmological constant (ω = −1) gives a(t) ∝ exp(Ht). Cosmological and astronomical
observations today tell us that the Universe is flat with ω ≃ −1.

2.2 Shortcomings of the Standard Big Bang Theory
The FRW Universe introduced above constitutes to the standard Big Bang theory. While this theory
explains many observations very successfully, it fails to give a satisfying understanding of the initial
conditions.

2.2.1 Horizon Problem
In introducing the FRW formalism we assumed homogeneity and isotropy of the Universe. From
large-scale structure (LSS) surveys we know that the Universe today satisfies these conditions on the
largest accessible scales. Since inhomogeneities grow in time due to gravity, we would expect the
Universe to be more homogeneous as we go back in time. Observations of the cosmic microwave
background1 (CMB) show that this is indeed the case as the inhomogeneities are much smaller at the
last-scattering (recombination) surface than they are today. Hence we expect these inhomogeneities to
be remarkably small at yet earlier times. Moreover we know from the standard Big Bang theory that
the early Universe (e.g. observed at the CMB) consists of many causally disconnected regions of space.
Consider the comoving particle horizon, τ , introduced before as the maximum distance a light ray can
travel between an initial time ti = 0 and time t. This is equivalent to the fraction of the universe in
causal contact. Expressing τ as the integral of the comoving Hubble radius, (aH)−1

τ ≡ ∫
t

0

dt′

a(t′) = ∫
a

0

da
Ha2

= ∫
a

0
d lna( 1

Ha
) , (2.19)

and using the equation of state for the fluid dominated universe given above, we find

(aH)−1 =H−1
0 a1/2(1+3ω) , (2.20)

where H0 is the Hubble scale today. During the standard Big Bang expansion (ω ≥ 0), (aH)−1 grows
monotonically and the comoving horizon τ increase with time. This means that the comoving scales
entering the horizon today must have been far outside the horizon at CMB surface. Nevertheless the
CMB tells us that the Universe was almost perfectly homogeneous at the time of recombination on
scales much larger than what is limited by the causal horizon.

2.2.2 Flatness Problem
In addition to the horizon problem concerning the initial density distributions, standard Big Bag theory
requires fine tuning of initial velocities as well. First, note that the local curvature in the Universe is
defined by the difference between kinetic and potential energies. If the initial velocities are too small (or
large), universe re-collapses (or expands) rapidly. This results in the failure of forming any structure

1See Section §2.6.1 for a review.
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in the former case, and becoming nearly empty in the latter cases. Hence the fluid velocities need
to be finely tuned across the causally separated regions of space. Consider the previously introduced
Friedmann equation,

H2 = 1

3
ρ(a) − k

a2
, (2.21)

which we can rewrite it as
1 −Ω(a) = −k

(aH)2
, (2.22)

where
Ω(a) ≡ ρ(a)

ρcrit
and ρcrit(a) ≡ 3H(a)2. (2.23)

Here, ρcrit is the time- or scale-dependent critical energy density of the flat (Euclidean) Universe. As
can be seen from Eqn. (2.23), Ω(a) parametrises the ratio of some energy density to the critical energy
density. The critical density ratio is taken as Ωcrit = 1. Apparent from Eqn. (2.22), this value is in
fact an unstable fixed point since the quantity ∣Ω − 1∣ diverges with time as comoving Hubble radius
(aH)−1 grows. This means that the only explanation for the observed near-flatness of the Universe
today Ω(a0) ∼ 1 is for the early Universe to be extremely flat (e.g. ∣Ω − 1∣ ≤ O(10−16) at BBN and
∣Ω − 1∣ ≤ O(10−55) at GUT).

2.3 The Inflation Primer
2.3.1 Inflation as a Solution
Both the horizon and the flatness problems arise due to the comoving Hubble radius, (aH)−1, is
increasing at all times. It is tempting to consider a simple solution by inverting its behaviour. In
order to see this, it is important to understand what does the comoving Hubble radius mean and it’s
difference from the comoving time τ (or equivalently comoving horizon) in Eqn. (2.19). If two particles
are separated by a distance greater than the comoving horizon, this means they have never been in
contact. If they are separated by a distance greater than the comoving Hubble radius (aH)−1, they
are out of causal contact today. Two particles that were in causal contact before, may fall well out of
contact, i.e. τ ≫ (aH)−1 now, if the comoving Hubble radius in the early Universe was much larger
than it is now. Hence we introduce a phase of decreasing Hubble radius. Since the Hubble parameter H
is approximately constant, scale factor a grows exponentially during inflation resulting in the decrease
of the comoving Hubble radius. This in turn fixes the flatness problem, i.e. for a non-flat universe the
decreasing comoving Hubble radius drives the universe toward flatness

∣Ω(a) − 1∣ = 1

(aH)2
, (2.24)

where the solution Ω = 1 is the attractor during inflation. Inflation similarly solves the horizon problem
since decreasing comoving horizon means that the larger scales were smaller than the Hubble radius
at early times and hence causally connected.

2.3.2 Basic Dynamics
From observing the Friedmann Equations, we arrive at two distinct phenomenological outcome, equiv-
alent of our definition of decreasing comoving Hubble radius

d
dt

( 1

aH
) < 0, (2.25)
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namely, the accelerated expansion and a negative pressure. Accelerated expansion is a direct outcome
of decreasing (or shrinking) comoving Hubble radius

d
dt

(aH)−1 = −ä
(aH)2

⇒ {d
2a

dt2
> 0} . (2.26)

It is common to relate this expression the the first time derivative of the Hubble parameter

ä

a
=H2(1 − ε), where ε ∶= − Ḣ

H2
, (2.27)

with
ε = −d lnH

dN
< 1, (2.28)

where dN = d lna measures the number of e-folds N of inflationary expansion. Like the accelerated
expansion, negative pressure is also complementary to decreasing Hubble radius. We understand that
ä > 0 requires negative pressure

p < −1

3
ρ . (2.29)

Finally, it is useful to note the significance of introducing inflation (H ≃ const.) at the boundaries
with respect to the evolution of the scale factor

a(τ) = − 1

Hτ
, (2.30)

where the a = 0 singularity is now pushed to infinite past τi → −∞ and the scale factor becomes infinite
at τ = 0. This is since the Hubble parameter H is assumed to be constant meaning inflation lasts
forever with τ = 0 being equivalent to the infinite future t → +∞. While this approximation obviously
breaks down at times close to the end of inflation, it is still valid at early times. So in what follows,
τ = 0 no longer refers to the Big Bang, but instead the end of inflation. Hence by introducing inflation,
we attain ‘more time’ before recombination. This results in apparently disconnected patches to be in
causal contact.

2.3.3 Scalar field driving inflation
The simplest realisation for inflation is to consider a scalar field as an order parameter φ, the inflaton,
which parametrises the time-evolution of the inflationary energy density. The action for this scalar
field (minimally) coupled to gravity,

S = ∫ d4x
√−g [1

2
R + 1

2
gµν∂µφ∂νφ − V (φ)] , (2.31)

consists of an Einstein-Hilbert term R and the scalar field action Sφ made of a canonical kinetic term
and the potential V (φ) describing the self-interactions. The metric gµν is given at Eqn. (2.1) while
the stress-energy tensor for the scalar field is

Tµν ≡ −
2

√−g
δSφ

δgµν
= ∂µφ∂νφ − gµνLφ (2.32)

where Lφ is the Lagrangian of the action Sφ. The equation of motion for the field can be calculated as

δSφ

δφ
= 1

√−g∂µ(
√−g∂µφ) + V,φ = 0 , (2.33)
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where V,φ = dV
dφ . For the case of homogeneous field φ(t,x) ∶= φ(t) and the stress-energy tensor satisfying

perfect fluid, Tµν = diag(ρ,−p,−p,−p), with

ρφ =
1

2
φ̇2 + V (φ) ,

pφ =
1

2
φ̇2 − V (φ) ,

(2.34)

the equation of state becomes

ωφ ∶=
pφ

ρφ
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
. (2.35)

This equation tells us that the scalar field can cause negative pressure (ωφ < 0) and acceleration
(ωφ < −1

3) when potential energy of the scalar field V (φ) is sufficiently larger than the kinetic en-
ergy 1

2 φ̇
2. Finally, the Friedmann equations are solved to determine the dynamics of the scalar field

and also the FRW background which are written as

φ̈ + 3Hφ̇ + V,φ = 0 and H2 = 1

3
(1

2
φ̇2 + V (φ)) . (2.36)

2.3.4 Slow-roll inflation
The equation for an accelerating Universe, dominated by a homogeneous scalar field, was given in Eqn.
(2.27). For the scalar field driving inflation, ε is called the slow-roll parameter and can be written also
as

ε ∶= 3

2
(ωφ + 1) = 1

2

φ̇2

H2
. (2.37)

Inflation occurs if ε < 1 and de Sitter limit corresponds to ε → 0, where in de Sitter spacetime, the
potential energy dominates over the kinetic energy φ̇2 ≪ V (φ). For inflation to last long enough to
generate the primordial signatures we observe, the second time derivate of the field must also be small
∣φ̈∣ ≪ ∣3Hφ̇∣ , ∣V,φ∣. This introduces a second slow-roll parameter

η = − φ̈

Hφ̇
= ε − 1

2ε

dε
dN

, (2.38)

where ∣η∣ < 1 makes sure that the change of ε per e-fold is small. In the slow-roll regime, the background
evolution in Eqn. (2.36) further simplifies to

φ̇ ≃ −V,φ
3H

and H2 = 1

3
V (φ) , (2.39)

and the spacetime is approximately de Sitter, i.e. a(t) ∼ exp(Ht). Inflation ends when the kinetic
energy becomes comparable to the potential energy, i.e. when the slow-roll conditions are violated
ε(φend) ∶= 1.

2.4 Cosmological Perturbations
In the previous sections we introduced basic concepts in understanding a simple homogenous Universe.
We now begin our review of formulating the deviations from this simplicity.

2.4.1 Linear perturbations
Planck satellite and its predecessors consistently measured the Universe at the time of recombination
(CMB) to be very homogeneous with inhomogeneities of order O(10−5). These inhomogeneities may
then be naturally realised by linearly separating the cosmological quantities X(t,x), e.g. Tµν(t,x),
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gµν(t,x), etc., into a homogeneous background X̄(t) and a perturbative term δX(t,x). Scalar field
and metric perturbations around the homogeneous background φ̄(t) and ḡµν(t) for inflation can be
written as

φ(t,x) = φ̄(t) + δφ(t,x), and gµν(t,x) = ḡµν(t) + δgµν(t,x), (2.40)

with spatially flat FRW metric,

ds2 = −(1 + 2Φ)dt2 + 2aBidxidt + a2[(1 − 2Ψ)δij +Eij]dxidxj , (2.41)

where Φ is the lapse (a 3-scalar), Bi is the shift (a 3-vector), Ψ is the spatial curvature perturbation (a
3-scalar) and Eij is a symmetric traceless spatial 3-tensor called shear. The metric perturbations are
coupled to matter perturbations during inflation since the inflaton is the dominant contributor to the
stress-energy of the Universe. The perturbations to the stress energy tensor is then given as

T 0
0 = −(ρ̄ + δρ)
T 0
i = (ρ̄ + p̄)avi
T i0 = −(ρ̄ + p̄)(vi −Bi)/a
T ij = δij(p̄ + δp) +Σi

j .

(2.42)

where Σi
j is called the anisotropic stress. However the realisations in Eqns. (2.41) and (2.42) are not

unique, they depend on the choice of the coordinates or the gauge choice.

2.4.2 Gauge invariance
Gauge choice determines how the background maps onto physical spacetime with perturbation. Gauge
choice is ubiquitous to all areas of physics and carry much significance. An inappropriate choice of
gauge may result in some non-physical perturbations popping-up, or some real perturbations vanish
entirely. To avoid such issues, one must study the gauge-invariant combinations of perturbations which
by definition cannot be removed by coordinate transformations. Two such parameters in cosmology
are the curvature perturbation on uniform-density hyper surfaces

ζ ≡ Ψ + H
ρ̇
δρ , (2.43)

and comoving curvature perturbation

R = Ψ − H

ρ̄ + p̄ δq , (2.44)

where parameter δq is the momentum density (δq),i ∶= (ρ̄ + p̄)vi. The parameters ζ and R remain
constant on superhorizon scales and their autocorrelations are equal to each other at horizon crossing,
making them essential for cosmological calculations. In the next section we will give definitions for
various statistical terms often used in cosmology.

2.4.3 Basic statistics
The central statistical object in cosmology in the power spectrum of primordial scalar fluctuations R.
This is shown with by taking an expectation value of the fluctuations in the form

⟨ RkRk′⟩ = (2π)3δ(k + k′) PR(k) , (2.45)

or in the scale-independent representation

∆2
s ∶= ∆2

R = k3

2π2
PR(k) . (2.46)
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The scale independence is parametrised by the scalar spectral index

ns − 1 ∶= d ln ∆2
s

d lnk
, (2.47)

where for scale invariant spectrum ns = 1. The running of the spectral index is defined as

αs ∶=
dns
d lnk

, (2.48)

with which the power spectrum is approximated as

∆2
s(k) = As(k⋆) (

k

k⋆
)
ns(k⋆)−1+ 1

2
αs(k⋆) ln(k/k⋆)

(2.49)

where k⋆ is some arbitrary scale.

2.4.4 ADM action
Although it may not seem very simple at the first glance, Arnowitt-Deser-Misner (ADM) [7] formalism
has much importance in modern methods in cosmology as it lets one to explicitly separate temporal
and spatial degrees of freedom. This allows construction of the interaction Hamiltonian HI .2 The
ADM formalism is defined as

ds2 = −N2dt2 + gij(dxi +N idt)(dxj +N jdt) , (2.50)

where the spacetime is sliced into three dimensional hyper surfaces and gij behaves as a three dimen-
sional metric on constant time slices. In this formalism we see the change in variables lapse Φ→ N(x)
and shift Bi → Ni(x). While N(x) and Ni(x) describe the same physics, one major difference is that
they are simply algebraic Lagrange multiplies in the scalar action in Eqn. (2.31)

S = 1

2
∫ d4x

√−g [NR(3) − 2NV +N−1(EijEij −E2) +N−1(φ̇ −N i∂iφ)2 −Ngij∂iφ∂jφ − 2V ] (2.51)

and (defining extrinsic curvature as Kij = N−1Eij ) ,

Eij =
1

2
(ġij −∇iNj −∇jNi) = NKij and E = Eii = Eijgij . (2.52)

Although we will not be calculating cosmological perturbations in this paper, it is worth pointing out
the algebraic solutions for the parameters N and Ni. Namely, since these parameters are Lagrange
multiplies, we can write their equation of motion (or constaint equations) simply as

R(3) − 2V − gij∂iφ∂jφ −N−2 [EijEij −E2 + (φ̇ −N i∂iφ)2] = 0 ,

∇i [N−1(Eij −Eδij)] = 0 .
(2.53)

Plugging the solutions for these parameters back into the action leaves gij and φ as dynamical variables.

2.4.5 Comoving gauge
The comoving gauge is one of the more popular gauge choices and will be central various calculations
we will make in the following sections. We begin by choosing

δφ = 0 , (2.54)
2See [8] for a recent re-print of the original work by the authors.
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and (for ADM formalism)

gij = a2 [(1 − 2R)δij + hij] where ∂ihij = hii = 0 . (2.55)

It is not uncommon in cosmology for the parameters ζ and R to be mistakenly written for one another.
We will try avoid this by being explicit on our definition and follow Eqn. (2.44) and Eqn. (2.43). In this
gauge, inflaton is unperturbed where all scalar degrees of freedom area eaten3 by the metric fluctuation
R(t,x). We will complete this section by giving the results for curvature perturbation in comoving
gauge. If one re-writes the curvature perturbation in Eqn. (2.55) as

gij = a2e2Rδij , (2.56)

solving the constraint equations in Eqn. (2.55) for the Lagrange multiplies N = 1 + δN and Ni = ∂iχ ,
one finds

δN = Ṙ
H

and ∇2χ = ε Ṙ − ∇2R
H

. (2.57)

where ε is the slow roll parameter introduced in Section §2.3.4. We will return to these results later
when introducing the so called in-in formalism. Next, we will introduce the effective field theory of
microscopic physics of inflation. Effective field theory approach allows for the construction of a very
general representation and arguably more intuitive in considering links to condensed matter theories.

2.5 Effective field theory of inflation
We pedagogically introduced the usual approach to inflation in the preceding sections. There, we
started by introducing a Lagrangian for a scalar field φ in Eqn. (2.31) and calculated the equation of
motion for φ along with the Friedman equations for the FRW metric, i.e. in Eqn. (2.36). We then
introduced perturbations of the scalar field in Eqn. (2.40), and the FRW metric in Eqn. (2.41). The
standard approach in obtaining inflationary observables is then via calculating the action for these
fluctuations, where solving these perturbed equations depends on the a priori assumptions about the
microscopic physics sourcing the background. Effective field theory (EFT) of inflation [9–11] provides
an alternative approach and also allows a more generalised formalism. In EFT of inflation, one takes
the accelerating spacetime, ∣Ḣ ∣ ≪ H2, with quasi-de Sitter background H(t) as given and writes
the effective action for the fluctuations directly. Effective field theories are in general much simpler
than a UV complete theories and they are also broadly applicable to many scenarios. Moreover for
our purposes, EFT of inflation provides perhaps a most natural formalism to justify making direct
analogies with condensed matter physics due to the gauge invariance of fluctuations and decoupling
from gravity. We will explore this issue later in Section §3.4.2. In what follows, we will introduce the
EFT of inflation.

2.5.1 Unitary gauge
We begin with the observation that inflation breaks time diffeomorphisms4 by coming to an end.
This is realised by considering quasi-de Sitter background having a preferred spatial slicing. The
preferred slicing can be given by a function t̃(x) (with time-like gradient) which non-linearly realises
time diffeomorphisms. We can consider this slicing to be given by a time evolving scalar φ(t), a physical
clock, which allows the natural ending of inflation. With this observation, one then determines the most
general Lagrangian in the unitary gauge. Here, the unitary gauge is the one in which the coordinate t
is chosen such that the surfaces of constant t̃ are also a constant value of the scalar φ, i.e.

δφ(t,x) = 0 , (2.58)
3By eaten, we follow the common jargon (see e.g. [9]) in which we refer to the fact that the degrees of freedom are

parametrised by (in this case) R.
4Here and throughout when discussing EFT of inflation, we will refer to transformations as diffeomorphisms to match

the vocabulary used by EFT of inflation theorists.
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where time diffeomorphisms are fixed and the gauge symmetry is now spontaneously broken.5 The
choice in Eqn. (2.58) means that there are no scalar perturbations but only metric fluctuations, i.e.
the scalar degree of freedom is eaten by the metric.

2.5.2 The most general Lagrangian
The most general unitary gauge Lagrangian is composed of all the diffeomorphism invariant terms. In
the last section, we discussed the unitary gauge choice where slicing t̃ coincide with coordinate t. This
means the slicing degree of freedom, t̃, does not appear directly in the action. Moreover, any general
function of t̃, becomes a function of time, f(t), and can be used freely in the action. Finally in the
unitary gauge, the gradient of t̃ becomes a delta function

∂µt̃ = δ0
µ , (2.59)

which results in every free tensor attaining an upper 0 index (e.g. g00, R00). In addition to such terms,
the extrinsic curvature, Kµν , is also allowed. Extrinsic curvature can be calculated by defining a unit
vector perpendicular to constant t̃ surfaces,

nµ =
∂µt̃√

−gµν∂µt̃∂ν t̃
, (2.60)

where the induced spatial metric on constant t̃ surfaces is given as

hµν ≡ gµν + nµnν , (2.61)

which is used to project any tensor on the constant t̃ surfaces. The covariant derivative of nµ projected
on these surfaces gives the extrinsic curvature

Kµν ≡ hσµ∇σnν . (2.62)

Lastly, in addition to these terms, the Riemann tensor Rµνρσ and its covariant derivates, along with
their polynomials, also go in the Lagrangian as they are invariant under any diffeomorphism. The
most general Lagrangian is then written as [9]:

S = ∫ d4x
√−g [1

2
M2
plR − c(t)g00 −Λ(t) + 1

2!
M2(t)4(g00 + 1)2 + . . .

+ 1

3!
M3(t)4(g00 + 1)3 − (M̄1(t)3

2
)(g00 + 1)δKµ

µ

− M̄2(t)2

2
(δKµ

µ)2 − M̄3(t)2

2
δKµ

ν δK
ν
µ + . . . ]

(2.63)

where δKµν is the variation of the extrinsic curvature δKµν = Kµν − a2Hhµν . The linear terms are
fixed by the unperturbed FRW background evolution. Notice that only the these terms contribute to
the stress tensor

Tµν = −
2

√−g
δSmatter
δgµν

, (2.64)

where Friedmann equations for the flat FRW universe are

H2 = 1

3M2
pl

[c(t) +Λ(t)] and Ḣ +H2 = − 1

3M2
pl

[2c(t) −Λ(t)] . (2.65)

5Note that it is only the time diffeomorphisms that are broken. The action is still symmetric in spatial diffeomorphisms.
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Solving these equations for c(t) and Λ(t) give

S = ∫ d4x
√−g [1

2
M2
plR +M2

plḢg
00 −M2

pl(3H2 + Ḣ) + 1

2!
M2(t)4(g00 + 1)2

+ 1

3!
M3(t)4(g00 + 1)3 − M̄1(t)3

2
(g00 + 1)δKµ

µ

− M̄2(t)2

2
(δKµ

µ)2 − M̄3(t)2

2
δKµ

ν δK
ν
µ + . . . ] .

(2.66)

Notice that the first two terms can be written to take a form similar to slow-roll with potential
V (φ̄) = M2

pl(3H2 + Ḣ) and the kinetic term ˙̄φ2 = −2M2
plḢ. Next, we will reintroduce the gauge

invariance by introducing a Goldstone boson.

2.5.3 Introducing the Goldstone boson
The procedure of introducing the Goldstone boson follows making a gauge transformation to restore
the invariance of the unitary gauge action for a non-Abelian gauge group [12]. We will not give a review
of this topic here (see however Section §3.4.2), but directly apply the ideas to the unitary Lagrangian
following mainly [9]. We start by focusing on the two linear terms in Eqn. (2.66) of the form

∫ d4x
√−g [A(t) +B(t)g00(x)] . (2.67)

From Eqn. (2.59), we see that the broken time diffeomorphisms can be shown as

t→ t̃ = t + ξ0(x) , (2.68)

while the spatial diffeomorphisms are maintained,

x→ x̃ = x . (2.69)

As a result, g00 transforms as

g00(x) → g̃00(x̃(x)) = ∂x̃
0

∂xµ
∂x̃0(x)
∂xν

gµν(x). (2.70)

Next, we change the integration variable x to x̃ and write the terms as

x̃0(x) = t̃ − ξ0(x̃(x)) , (2.71)

to get

∫ d4x̃
√
−g̃(x̃) [A(t̃ − ξ0x(x̃)) +B(t̃ − ξ0x(x̃))∂(t̃ − ξ

0(x(x̃)))
∂x̃µ

∂(t̃ − ξ0(x(x̃)))
∂x̃ν

g̃µν(x̃)] (2.72)

Next, we define the Goldstone boson which transforms as a scalar field and an additional shift under
time diffeomorphisms

π → π = π − ξ0(t,x) . (2.73)

Notice under the reparametrization t→ t+ ξ0(t,x), the term t+ π is invariant. Finally for every ξ0 we
substitute the Goldstone mode

ξ0(x(x̃)) → −π̃(x̃) . (2.74)

Action then becomes

∫ d4
√
−g(x) [A(t + π(x)) +B(t + π(x))∂(t + π(x))

∂xµ
∂(t + π(x))

∂xν
gµν(x)] , (2.75)
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where we dropped the tildes for simplicity. Generalising this approach for the action in Eqn. (2.66),
one arrives at the general form of the unitary gauge action with the Goldstone boson [9]

S = ∫ d4x
√−g [1

2
M2
plR −M2

pl(3H2(t + π) + Ḣ)(t + π)

+M2
plḢ(t + π)((t + π̇)2g00 + 2(1 + π̇)∂iπg0i + gij∂iπ∂jπ)

+ M2(t + π)4

2!
((1 + π̇)2g00 + 2(1 + π̇)∂iπg0i + gij∂iπ∂jπ + 1)2 + . . . ] ,

(2.76)

where we only included up to terms in the first line of Eqn. (2.66). This action is complicated! It
involves many complicated interaction terms and also couplings between the gravity and the Goldstone
boson. Nevertheless, one must take into account that Eqn. (2.76) represents the most general unitary
gauge action. Moreover, it greatly simplifies at the relevant energy scale, namely at the decoupling limit.

2.5.4 Decoupling Limit
One of the main reasons for the EFT formalism of inflation to be attractive is that the physics of the
Goldstone boson decouples from the graviton at sufficiently high energies. This reasoning follows the
non-Abelian gauge theories and gapless-ness of Goldstone boson [12, 13], also see Section §3.4.2. In the
EFT of inflation formalism, the mixing between the longitudinal (e.g. Golstone) and the transverse
(e.g. graviton) components of the gauge field becomes irrelevant. This can be realised by observing
that the leading order contribution to the mixing in Eqn. (2.76) comes from the term

Lmix ∼M2
plḢπ̇δg

00 , (2.77)

which by normalisation πc ∼Mpl∣Ḣ ∣1/2π and δg00
c ∼Mplδg

00 takes the form

Lmix ∼ Emixπcδg
00
c where Emix ∼ ε1/2H , (2.78)

The variable ε is the slow roll parameter in Eqn. (2.27). This means that in the regime E ≫ Emix, only
Goldstone boson controls the dynamics. We realise this decoupling limit by takingMpl →∞ and Ḣ → 0
where we hold M2

plḢ ≫ H4 fixed. This allows one to ignore the metric perturbations and use only
the (unperturbed) background de Sitter metric ḡµν . Recall the transformation for the gauge invariant
parameter g00 in Eqn. (2.70). At the decoupling limit, this becomes

g00 → ∂µ(t + π)∂ν(t + π)ḡµν = −1 − 2π̇ − π̇2 + (∂iπ)2

a2
, (2.79)

where the Lagrangian for (gauge invariant) fluctuations simplifies considerably,

Sπ = ∫ d4x
√−g [ M2

plḢ( − π̇2 + (∂iπ)2

a2
) + 2M4

2 (π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . . ] . (2.80)

We see above that at the quadratic level, the coefficient of the spatial kinetic term (∂iπ)2 is completely
fixed by the background. This is not the case for the time kinetic term π̇2 as it receives an extra contri-
bution with coefficient ∼M4

2 . In order to maintain a stable action we must have (−M2
plḢ + 2M4

2 ) π̇2 > 0.
An object of interest for various calculations is the speed of sound cs.

c−2
s = 1 − 2M4

2

M2
plḢ

, (2.81)
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which may be different than one, i.e. cs ≠ 1, even though we are referring to a massless Goldstone
boson. This is because the time and spatial terms have different coefficients.

2.5.5 The R→ π correspondance
We will end our review of EFT of inflation by pointing out the direct correspondence between the gauge
invariant curvature perturbationR and the Goldstone boson π. This can most easily be observed in the
comoving gauge which is introduced in Section §2.4.5. In EFT formalism, comoving gauge is equivalent
to unitary gauge since π ∼ δφ, where it is realised by choosing π = 0 and defining the spatial metric as
in Eqn. (2.55). Since the metric is unperturbed in the decoupling limit, the choice π = 0 amounts to a
time diffeomorphism

t→ t − π(t,x) , (2.82)

which gives
R(t,x) = −Hπ(t,x) . (2.83)

This completes our review of the EFT of inflation. In the next section, we will begin reviewing the
observational aspects of early Universe cosmology.

2.6 Observations of the Early Universe
In this section, we will review the correspondence of early Universe physics with the CMB signal and
introduce statistical methods for these calculations. In the next section we will discuss the state-of-
the-art non-Gaussianity calculations both in experiments and also in theory.

2.6.1 The cosmic microwave background
We have mentioned the cosmic microwave background (CMB) radiation few times before without going
into much detail on its properties. The CMB is a ‘relic’ black body radiation which dates back to when
the Universe was 380,000 years old (z ≃ 1100) when the electrons first became bounded by protons
forming atoms (i.e. recombination), allowing photons to freely propagate for the first time. The most
recent detection of the CMB was carried out by Planck satellite (see latest results from 2015 [1]). The
CMB signal is particularly valuable for understanding the physics of the early Universe as it can be
isolated to include only the primordially sourced density fluctuations. This is essentially due to two
reasons. First, the thermodynamics effects that influence the CMB signal are well understood between
safely after inflation and recombination are well understood. Second, the background cosmology that
effects the propagating photons from recombination to the detectors today is also well understood.
These effects can be accounted for at the observed CMB signal by calculating the relevant transfer
functions and projection effects. What remains after this deconvolution is the primordial fluctuations
from the very early Universe (see Figure 2.1). In the previous sections we introduced the primordial
comoving curvature perturbation R and discussed its relevance to cosmological observations. Not only
that this quantity is independent of how we choose our coordinates describing the fluctuations, but
it’s amplitude is also frozen at the horizon crossing during inflation. Since these superhorizon modes
enter back into the horizon safely6 after the end of inflation, we can relate the fluctuations of R to the
measured temperature fluctuations by simply accounting for the physics between the horizon re-entry
and CMB recombination (see Figure 2.2) in the form

Tcmb(τ) = ∆T (k, τ, τ⋆)Rk(τ⋆) , (2.84)

where Tcmb(τ) is the measured value at later time τ . The ∆T is the transfer function between the
horizon re-entry for R fluctuations at time τ⋆ and the observation at τ .

6Modes that cross the horizon during inflation enter back not immediately after the end of inflation but a while later,
not being affected by reheating, which is a much lesser known and highly non-linear phenomena.
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Figure 2.1: [Image Credit: Planck]. The CMB observed by Planck satellite. Image shows that
anisotropies in temperature fluctuations with blue (red) areas represent directions on the sky where
the temperature of the CMB is O(10−5) below (above) the mean temperature value (T̄ = 2.7K). The
temperature fluctuations ∆T correspond to the (primordial) density variations since photons loose
energy while climbing up out of gravitational potentials at the overdense (i.e. blue) regions. The
properties of the physics of the early Universe, as well as the evolution of the cosmological background,
manifests in the statistical characteristics of the CMB signal.

2.6.2 Temperature Fluctuations and The Power Spectrum
Following the arguments in the previous section, we are now interested in calculating the power spec-
trum PR(k) for curvature perturbations. Inflation predicts

k3PR(k) ∝ kns−1 , (2.85)

where ns ≃ 1 and
⟨RkRk′⟩ = (2π)3δ(k + k′)PR(k) . (2.86)

The general function that relates the primordial fluctuations to the measurements consists of a transfer
function and a projection as we explained before. Since the CMB signal is very homogenous, the
calculations are most easily done in phase space with spherical harmonic expansion. The transfer
function becomes

∆Tl (k) = ∫
τ0

0
dτ ST (k, τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Source Terms

P Tl (k[τ0 − τ])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bessel Functions

, (2.87)

with the multipole moments l and τ0 is some later time. The transfer function is in general calculated
numerically using Boltzmann codes CMBFAST or CAMB. The angular power spectrum of the CMB
temperature measurements then become

CTTl = 2

π
∫ k2 dk PR(k) (∆Tl (k))

2
. (2.88)

The angular power spectrum is a very widely used statistical tool which contains most of the information
CMB map holds in a very compact way. The angular spectrum of CMB temperature fluctuations
published by Planck collaboration is given in Figure 2.3.
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Figure 2.2: Chronology of fluctuations in the early Universe. Red line shows the comoving scales k−1

that remains constant throughout the evolution. Blue line represents the comoving Hubble radius
(aH)−1 which shrinks during inflation but increases once inflation has ended. Fluctuations are created
on sub-horizon scales quantum mechanically. They remain constant once the modes exit the horizon
and remain frozen until long after the end of inflation, being unaffected by the influence of the reheating
process. From horizon re-entry to the CMB recombination, the background effects can be realised by
calculating the transfer functions ∆T based on thermodynamical principles (see also [6]).

2.7 Non-gaussiantities
In the case the primordial fluctuations of R are purely Gaussian, power spectrum will contain all the
statistical information available. However, deviation from Gaussianity can be caused by a number of
things including a wide range of late time effects7. What is of great interest for the early Universe
cosmologists, however, is the primordially sourced non-Gaussianity. Primordial non-Gaussianity can
be produced by the quantum effects of microphysics of inflation, or by the non-linear classical evolution
of super-horizon modes (see e.g. for qualitative review [14–16]).

2.7.1 Primordial bispectrum
While there is one way for a distribution to be Gaussian, there are infinitely many ways for that
distribution to deviate from perfect Gaussianity. One reasonable way to calculate these deviations,
however, is Taylor expanding to probability distribution around a Gaussian one. In this representation,
the leading effect comes from the Fourier transform of the three point function and called the bispectrum

⟨Rk1Rk2Rk3⟩ = (2π)3δ3(k1 + k2 + k3)BR(k1,k2,k3) . (2.89)

The translation invariance of the background introduces the delta function (momentum conservation),
rotational invariance reduces the independent parameters to two which characterise the shape of the
bispectrum (e.g. k2/k1, k3/k1).

7For the CMB signal these include the foreground (i.e. Galactic and extra-Galactic sources), lensing effects generated
after recombination and non-linearities in the transfer function ∆Tl , relating curvature perturbation at the horizon re-
entry R to temperature anisotropies at the CMB, ∆T . As we discussed before, these effects can be removed from the
signal since the physics that sources them are relatively well understood.
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Figure 2.3: [Image Credit: Planck 2015]. Angular power spectrum calculated by the Planck satel-
lite with DT Tl = l(l + 1) CT Tl /(2π) where l is the multipole moment. The CT Tl ’s are directly related
with the curvature perturbation PR(k). The power spectrum tells us that the theoretical calculations
match very well with the data and we understand the physics that shape the CMB power spectrum.
Moreover, it proves that the Fourier modes of primordial fluctuations are of the same phase. Which is
a direct consequence of inflation! (see e.g. for discussion on topic [5]).

2.7.2 Shapes of bispectrum
Bispectrum contains a lot of information about the source of the non-Gaussianity, allowing to distin-
guish between models. Perhaps simplest way to calculate non-Gaussianity is by introducing a non-linear
correction to the otherwise Gaussian curvature perturbation Rg,

R(x) = Rg(x) −
3

5
f localNL (R2

g − ⟨Rg⟩2) . (2.90)

This correction is called local non-Gaussianity due to it being local in real space. By combining Eqns.
(2.90) and (2.89) one calculates the bispectrum of the local non-Gaussianity as

BR(k1, k2, k3) =
6

5
f localNL × [PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆) PR(k)∝Ak−3

, (2.91)

where we apply the scale-invariance (⋆) to get

BR(k1, k2, k3) =
6

5
f localNL ×A2 [ 1

(k1k2)3
+ 1

(k2k3)3
+ 1

(k3k1)3
] . (2.92)

Consider the ordering k3 ≤ k2 ≤ k1, which can be assumed without loss of generality. In this case, the
bispectrum is largest when k3 ≪ k1 ∼ k2. This is called the squeezed limit and the bispectrum for local
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non-Gaussianity becomes

lim
k3≪k1∼k2

BR(k1, k2, k3) =
12

5
f localNL × PR(k1)PR(k3) . (2.93)

In general, the shape of non-Gaussianity is a quite important measure on the properties of primordial
perturbations. Bispectrum can be written as

BR(k1, k2, k3) =
S(k1, k2, k3)
(k1k2k3)2

⋅∆2
R(k⋆) , (2.94)

where ∆2
R(k⋆) = k3

⋆PR(k⋆) . Some of the other shapes include equilateral non-Gaussianity, where the
shape peaks once the configuration is equilateral k1 = k2 = k3 or orthogonal non-Gaussianity where the
observed shape is orthogonal to both equilateral and local templates Sortho. ⋅ Sequil. = Sortho. ⋅ Sloc. ∶= 0 .

2.8 Cosmological quantum corrections
In this section we will introduce one of the tools available for calculating cosmological corrections to
what otherwise would be homogenous and Gaussian distributions. Namely, we will introduce the in-in
formalism for calculating the corrections arise from effects of micro-scale physics by using quantum
field theory methods. In the following chapters we will return to this method when calculating the
effects of the disorder phenomena we will soon introduce.

2.8.1 In-In Formalism: Corrections from quantum effects
The origin of the in-in method dates back to J. Schwinger [17] and L. Keldysh [18] and involves
calculating closed-time path (CTP) integrals. This method was then studied and formulated for
cosmology in order to calculate perturbative quantum-mechanical effects in the early Universe by
J. Maldacena [19] and S. Weinberg [20]. We will review the contemporary cosmological formalism in
what follows.

Review

When calculating correlation functions in particle physics quantum field theories the essential object
is the S-matrix which describes transition probabilities from a state very early in time to a state vary
far in future

⟨out∣S ∣in⟩ = ⟨out(+∞)∣in(−∞)⟩ . (2.95)

In cosmology, on the other hand, we are not necessarily interested in calculating transition probabilities
with S-matrix elements but instead calculating various expectation values at a fixed time. Hence the
conditions are imposed on the fields only at very early times8. The expectation value takes the form

⟨Q⟩ = ⟨in∣Q(t) ∣in⟩ , (2.96)

where ∣in⟩ is the vacuum with interacting degrees of freedom at a very early time t0 and t is some time
later like the horizon crossing where we wish to calculate our n-point functions of the parameters we
are interested with. In Figure 2.4 we demonstrate the path integral given in Eqn. (2.96). The point
of return represents where the expectation values are calculated. We now present the ‘master formula’
of the in-in formalism (see also the discussion in Section §4.3.2),

⟨Q(t)⟩ = ⟨0∣
⎡⎢⎢⎢⎢⎢⎣
T̄ exp (i

t

∫
−∞(1−iε)

dt′HI(t′))
⎤⎥⎥⎥⎥⎥⎦
QI(t)

⎡⎢⎢⎢⎢⎢⎣
T exp ( − i

t

∫
−∞(1−iε)

dt′′HI(t′′))
⎤⎥⎥⎥⎥⎥⎦
∣0⟩ , (2.97)

8This results in the same form interaction picture fields due to Equivalence Principle, see [20] .
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Figure 2.4: Graphical demonstration of the path integral in the in-in formalism.

where T̄ is the anti-time ordering symbol and iε used to project interacting vacuum state ∣in⟩ onto free
vacuum state. This expression can then be perturbatively expanded to give more convenient equivalent
form, which we will also use later in the work

⟨Q(t)⟩ = ∑
n=0

in
t

∫
−∞(1−iε)

dtn
tn

∫
−∞(1−iε)

dtn−1 . . .

t2

∫
−∞(1−iε)

dt1

× ⟨[HI(t1), [HI(t2), . . . [HI(tn),QI(t)] . . . ]]⟩ .

(2.98)



Chapter 3

Condensed Matter Phenomena &
Disorder

In this chapter we will discuss the analogies between condensed matter physics and early Universe
cosmology. Our aim is to give a clear description of the condensed matter phenomena that can be
related to cosmological scenarios. We believe when making these analogies, it is most appropriate to
start by considering the notion of ‘complexity’ which we introduce in Section §3.1. Then, starting from
Section §3.2, we focus mainly on the mechanism of disorder.

3.1 Complexity and emergence
In the first chapter, we suggested the idea of complexity as an inherent characteristic of the underlying
physics in the early Universe. We begin by introducing what we call ‘the condensed matter point of
view’ and reviewing some of the related concepts.

3.1.1 Condensed matter point of view and complexity
Since the discovery of Anderson localisation [21], a significant part of modern condensed matter physics
has shifted its focus onto the emergent phenomena that is seen in the larger scales. Form this point
of view, the precise microscopic details of a system is not too important and what matters is the
cooperative effect manifest in larger distances. It is perhaps appropriate to consider this in relation to
a box in space:1

Inside the box, we have some local quantum mechanical degrees of freedom. These degrees of freedom
live inside the box and one can write the Hamiltonian for them and their near neighbours with no
specification on what happens at a distance from the box. However, an experiment makes observations
on much larger scales than this box. One may then proceed to solving these equations in attempt
to decide what happens at a larger distance, but this may not be feasible. Moreover, generally in
condensed matter scenarios, what is inside the box may be extremely complicated with many interacting

1For this analogy, we were inspired by the S. Coleman memorial talk given by E. Witten in 2005 [22].

21
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degrees of freedom making its quantitative representation2 even more infeasible. The science which
investigates the large scale behaviour of systems (or structures) that are inherently complex is called
complexity.

The science of complexity spans a rather wide range of fields and phenomena. In fact, there is not a
consensus among physicists what exactly they mean when they say ‘complexity’. In many cases the
complexity is used to refer to macro-scale complexity arisen from micro-scale simplicity. While it may
seem in contrast with our introduction just now, the general idea behind complexity science is always
the same, the evolution of a system in a way not determinable by reductionist methods, but through
studying the collective behaviour and the emergent universal phenomena.

3.1.2 Emergent phenomena
Perhaps one of the best understood example for such emergence phenomena is the Anderson localisation
[21, 23] where the wave functions become localised in materials (see Section §3.2.2). The emergence is
the phenomena in which ‘more is different ’ [24], i.e. the large scale physics is rich with novel character-
istics3. One such characteristic is universality, namely the appearance of global features independent
of the microscopic parameters of the system. Universal features are perhaps most rigorously studied
in statistical mechanics along with critical points where the systems change their large-scale behaviour
(e.g. phase) whilst some order parameter (e.g. temperature) is changed smoothly (see [25] for a re-
view). If this change in large-scale behaviour (i.e. phase transition) is continuous, the distance over
which fluctuations of microscopic degrees of freedom are correlated (i.e. correlation length) becomes
effectively infinite, forcing the entire system to acquire the same phase as all the competing phases
vanish. The presence of universal characteristics in a system would point to a mechanism that would
allow very long distances to be correlated. Both in condensed matter physics and in statistical physics,
this phenomena may also occur if there is a mechanism allowing transport throughout the system (e.g.
dissipation or dissipative transport) or some forms of disorder. Another emergent characteristic is the
scaling behaviour between variables of the complex system. The scaling in general take the form of
power laws with exponents showing universality.

3.1.3 Coarse Graining and Renormalisation Group (RG)
One of the central themes in emergent phenomena and complexity is coarse graining. In short, coarse
graining refers to integrating over (or smoothing) the smallest scales, often irrelevant fluctuations, in
a system of many interacting degrees of freedom. It serves as a procedure effectively projecting the
microscopic physics to larger scales which are relevant for measurements. Many phenomena may be
studied qualitatively to be emergent under coarse graining as well as hierarchical levels in branches
of physics.4 For the discussion on this paper, we will be mainly interested in possibly fundamental
properties of a system in much shorter scales, becoming statistical through processes akin to coarse
graining. Nevertheless, it should be understood that the analogy with real physical phenomena and
coarse graining grows much deeper. The framework in which these ideas are applied to a wide range
of problems is called renormalisation group (RG). In renormalisation group studies one attempts to
re-parametrise a problem in a simpler way while staying true to its physical essence. These studies are
also called renormalisation group flow since the RG equations describe some ‘trajectory’ formed as a
result of performing a coarse graining procedure successively.

2In addition to this microscale complexity, while the system of equations in condensed matter physics are in general
known (many body Schödinger equation), this is in general not true for the early Universe physics.

3These characteristics are realised by cooperative behaviour and renormalisation group methods which will be dis-
cussed next.

4 An example would be thermodynamics, being quantum field theory coarse grained, also see [26, 27] for a general
discussion on these topics.
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3.1.4 Establish links with Cosmology
Complexity science thrives on establishing analogies. Previously, we have introduced the ‘condensed
matter point of view’ and gave definitions for various related subjects. In the preceding sections, we
will make an attempt to discuss the analogies between cosmology and condensed matter physics. Let
us first revisit the initial discussion about the box in Section §3.1.1. In order to make sense out of such
analogy, one must be able to define a box, namely the theory must have some local gauge invariant
parameters defined inside the box. In condensed matter physics this is easy since the real space
parameters (i.e. locations, angles etc.) are in general well defined. However, in cosmology, accounting
for the effect of gravitational coupling may complicate things. In the presence of gravity, the box itself
may not be well defined since the parameters such as location in real space are not gauge invariant
and the size of the box (i.e. the distance measure) changes due to metric fluctuations. We will attempt
to avoid this issue in two ways. First, we will consider classical, super-horizon effects, as discussed in
Section §3.4.1. Next, in our discussion of the quantum phenomena, we will employ the effective field
theory formalism introduced in Section §2.5 which allows decoupling from gravitational effects. Hence
in this way, defining some form of a box in order to calculate coarse-grained statistical effects on the
cosmological observables should be possible in fundamental early Universe cosmology, as in condensed
matter physics. Next, we start with a short conceptual review of disorder in theories of condensed
matter and statistical physics.

3.2 Disoder or ‘Ill-Condensed Matter’5

Disorder, or inhomogeneities, exist naturally and ubiquitously in real would quantum or classical
many-body systems. Their consideration in condensed matter physics has been remarkably rewarding
(see for review e.g [28–30]). In fact, many phenomena such as percolation [31], localisation [21], spin
glasses [32] and topological defects [33] are discovered by considering disorder. Moreover, disorder
adds much more to the phenomena of criticality that we have mentioned along with continuous phase
translations (see for review e.g. [34, 35]). We can easily formalise disorder with a fermion ψ (e.g. an
electron) scattering by a random potential m(x)

S = S0 − ∫ dx m(x)ψ̄ψ , (3.1)

with four-vector x ∶= (t,x) and dx = ∫ dt ∫ d3x where the S0 is free fermion action. Thouless in [28, 36]
showed that for mass dimensions with D ≤ 2 (i.e. of random potential m(x)), disorder was relevant.
Next, we begin studying the mechanism of disorder.

3.2.1 Quenched Disorder
For our purposes, disorder can be separated into two types, annealed and quenched disorder. Annealed
disorder is one where the degrees of freedom parametrising the impurities are in thermal equilibrium
with the rest of the system. Or in other words, the frequency of the fluctuations sourcing temporary
deviations from homogeneity are compatible with the system (if not faster). In such cases, system is
called to be ergodic6 where one can simply treat disorder and other system variables in the same foot-
ing, i.e. taking average over this effect gives the correct statistical measures of partition function and
other quantities. There many studies of annealed statistical effects in the early Universe, see e.g. for
inflation [37–40]. Although the technical treatment of annealed disorder is much easier, the phenom-
ena it facilitates is limited. On the other hand, quenched disorder is a remarkably rich and curious
phenomena. In systems with quenched disorder, the inhomogeneities are frozen, i.e. the degrees of
freedom sourcing random fluctuations are not in equilibrium with the system. These systems are in

5This chapter title was inspired by the 1979 XXXI Session of the Les Houches Summer School [28] on ‘disordered’
condensed matter systems which this section partly follows.

6Ergodic means that the system once not disturbed and let to evolve, quickly reaches to thermal equilibrium as there
is no mechanism to prohibit its thermalisation, see also Section §3.3.1.
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general non-ergodic. We can imagine this effect as some field propagating in an environment with
relatively constant impurities. Depending on the location and size of these impurities, the field may
get distorted locally (e.g. pinning) for times much longer than field’s fluctuation frequency. In this
scenario impurities act like potential barriers restraining system from reaching equilibrium. Hence,
one has to treat the variables associated with disorder separately from the systems’ variables. Statisti-
cally, this complicates things considerably since the common measures such as the averaged partition
function are no longer reliable as the variance of the field fluctuations are much larger. We then need
to calculate other quantities commonly called self averaging7 quantities such as the free energy . In
Section §3.5 we will introduce a tool to account for this.

3.2.2 Percolation and localisation
For a given continuous system, percolation [41] may become synonymous with transport problems such
as propagation and dissipation, as well as electrical problems such as conductivity or insulation.. The
theory of critical phenomena also applies to percolation problems in which systems exhibit universal
characteristics. We will see in the following sections that inflation may be studied as a percolation
problem where the inflaton field driving inflation percolates through some environment. This will
become much more apparent when discussing disorder in EFT of inflation Section §3.4.2. In addition
to percolation, perhaps the most famous example of phenomena emergent from quenched disorder is
the Anderson localisation [21]. Anderson showed in his 58’ paper that if there exist sufficient amount of
disorder, electron wavefunction becomes exponentially localised, i.e. the envelope of the wave function
decays exponentially from some point in space

∣Ψ(x)∣ ∼ exp (∣x − x0∣/ξ) , (3.2)

where ξ is the correlation length (see for review e.g. [30]) meaning that electron eigenstate is localised
at some suitable region and the system becomes an insulator. Here, this phenomena is due to quantum
interference of waves which are scattered by impurities. The Anderson model for non-interacting
system of spins can be written as

H = ∑
i

εiâ
†
i âi + V ∑

⟨i,j⟩

â†
i âj , (3.3)

where â (â†) are the annihilation (creation) operators for electrons, ⟨ ⋅ ⟩ refers to nearest neighbours
and εi are randomly distributed energies with some width W . The ratio W /V measures the size of the
disorder. Anderson discussed that whenW /V is large enough, system would become an insulator. Soon
after, this phenomena has been shown to be correct especially in one-dimension, even for very weak
disorder, i.e. all W > 0 by Mott [42] and later for dimensions D ≤ 2 [23]. The localisation phenomena
plays central role in a wide range of modern physics research.

3.3 Topics in modern condensed matter
In the previous section we introduced the concept of disorder as it was in mid-late 20th century. We
will now make an attempt to discuss some of the more current research in disordered condensed matter
systems and point their relevance to cosmological scenarios when possible. Especially today, the line
that draws the limits of what is considered ‘condensed matter physics’ is of coarse as vague as it is in
defining complexity. Throughout this section, we will mainly focus on subjects that can perhaps be
collected under ‘far from equilibrium (quantum) dynamics’. This field is perhaps one most in synch
with cosmology as it is also strongly driven with the motivation of understanding various early Universe
phenomena such as reheating and preheating, see e.g. [2, 26, 43]. In this section we qualitatively review
various phenomena seen in isolated quantum many-body systems far from equilibrium.

7For our purposes in this work, we define the ‘self averaging quantity’ as one that has vanishing variance if averaged
our a sufficiently large ensemble.

7Free energy is the logarithm of the partition function, namely F ∼ lnTr[exp(−H)].
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3.3.1 Thermalisation
One of the big questions common both in cosmology and also condensed matter physics is the equilibra-
tion (or reaching the equilibrium state) of isolated many-body quantum systems. In a thermodynamic
system, this process is called thermalisation. The thermalisation of all initial states means that all
many-body eigenstates of the system’s Hamiltonian H are thermal. This is called Eigenstate Ther-
malisation Hypothesis (ETH) and has many applications in condensed matter physics, e.g. [44]. The
subject of thermalisation of a non-equilibrium system was first studied in length in a cosmological
context by R. Brandenberger et.al. in [2].

If an isolated system exhibits non-ergodic character at some initial time, and then reaches thermal
equilibrium at some later time, this requires an effective memory loss of initial conditions. The tran-
sition between ergodic and non-ergodic behaviour for isolated many-body quantum systems is a very
active field of research in condensed matter physics (see e.g. [45]) and relates directly to thermalisation
process of the early Universe.

3.3.2 Prethermalisation
The effective memory loss discussed in the previous section is realised by unitary time evolution
of a system with only approximately conserved quantities exhibiting quasi-stationarity while not in
equilibrium. This phenomena is called pre-thermalisation and has many applications in cosmology,
e.g. [46], as well as modern condensed matter systems [47]. Disorder is closely linked to thermalisation
and prethermalisation. This is mainly because it may drive a system towards a non-ergodic state,
resulting in the acquirement of extensive conservation laws and symmetries preventing the system
from reaching a thermal state. In what follows we will try to give weight to phenomenological aspects
of disordered systems in modern condensed matter physics.

3.3.3 Localisation revisited
Systems that do not thermalise are often called Anderson-localised systems. The phenomena is in
general due to quenched disorder, see e.g. [45, 48, 49], (see however [50]). We already described the
phenomena of single-particle localisation as suggested by Anderson [21]. The contemporary studies of
single particle localisation include quantum Hall effect, disordered wires, transfer problems and many
others, see for review [51]. The localisation phenomena collectively experienced by many degrees of
freedom of a given system is called many-body localisation (see e.g. [52]). The main difference is
that the many-body localisation involves interactions between degrees of freedom of the system (such
as electron-electron interactions) and has a wide range of applications, e.g. see for review [53]. In
what follows, we will qualitatively review an aspect of localisation and related phenomena, so-called
‘emergence of slow dynamics’.

3.3.4 Emergence of slow dynamics
The recent studies on systems with strongly correlated degrees of freedom as well as various quenched
scenarios suggest systems can be trapped in prethermalisation state for long times, see e.g. [46, 47,
54, 55]. This phenomena is sometimes called slow dynamics. If the microscopic energy scale of a
system span a wide range, slow dynamics may emerge from the slow modes behaving like impurities
for faster modes. This may cause the faster modes to become localised. This phenomena could also be
studied from a cosmological perspective. For instance, during inflation, the long modes crossing horizon
becomes frozen. The longer modes with k ≫ H may be considered to have similar effects on faster
modes around the horizon. In the next chapter, we will study disorder classically on super-horizon
scales with similar motivation. For quantum effects in considering the phenomena of slow dynamics,
the presence of quenched disorder would have a direct effect on the (p)reheating phenomena suggested
first in [56]. Other examples emergent slow dynamics include (nearly) integrable one-dimensional
systems such as polymers, spin-chains, see e.g. [57] and disordered wires [58]. Other phenomena
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include Griffiths phase, which is related to slower evolution of a system around ‘dirty’8 critical points
near phase transition, see e.g. [59].9 The phenomena of slow dynamics is also strongly linked with
cosmology in the context of the abundance of light particles and (many) broken symmetries we observe
in the Universe. We will come back to this discussion later, see however [61].

3.3.5 Non-equilibrium universality
For equilibrium theories, universality phenomena have been in general well understood. This is not the
case for non-equilibrium systems and the study of non-equilibrium universality classes is a very active
area in condensed matter physics today. From a cosmological point of view, looking into condensed
matter physics, the ultimate goal would be a low energy small-scale laboratory experiment to contribute
to the understanding of the early Universe physics. Non-equilibrium universality studies have this
potential (see for discussion on this topic e.g. [62]).

3.4 Analogies with inflation
It is perhaps possible to find similar analogies between condensed matter scenarios and cosmology
when considering reheating (and preheating) phenomena. Nevertheless, our main interest in this work
is the inflation. We begin by considering disorder as a classical effect on super-horizon scales.

3.4.1 Emergent slow dynamics on super-horizon scales
In Section §3.3.4 we discussed how systems with wide separation of energy scales may show emergent
slow dynamics. In such systems, the slow modes act as quenched impurities on the fast modes. During
inflation, this phenomena may be analogous to long-wavelength modes freezing beyond horizon and
serve as a (classical) disordered landscape for the ‘faster’ short-wavelength modes around the hori-
zon crossing. One must note however that many emergent phenomena such as localisation discussed
throughout this section, is mostly a microscopic phenomena. This is why such effects would not be
manifest in treating disorder classically. Nevertheless, even in a classical setting, quenched impurities
require much different treatment than regular stochastic effects (see Section §3.5.1) and in turn may
cause suppression of faster modes, hence the ‘slowing’ of dynamics. Perhaps this phenomena, if exist,
would be partially responsible from a more ‘graceful exit’ at the end of inflation. We will be moti-
vated with considering these reasons in applying our formalism for disorder on super-horizon scales in
Section §4.2.

3.4.2 EFT of inflation
Now we turn our attention to quantum phenomenology of disorder. In this section, will add to the
analogies between inflation and condensed matter phenomena by discussing two properties of EFT of
inflation. EFT of inflation plays a central role in our study of disorder in the early Universe.

Spontaneous symmetry breaking10

An important analogy between condensed matter scenarios and inflation may be via considering infla-
tion as a spontaneous symmetry breaking in time. It is quite intuitive in cosmology to assume there
exist a preferred direction, i.e. forward in time. Nevertheless, realising inflation as a mechanism that
spontaneously breaks the time diffeomorphisms is perhaps more involved. In order to see this, recall
the FRW background with nearly constant expansion rate ∣Ḣ ∣ ≪ H2, which suggests an approximate
time-translation invariance of the background. However, from a purely phenomenological standpoint,

8Here, ‘dirty’ critical point is a critical point of the system near some phase transition under the effect of disorder.
9Here, we wish to return to our previous analogy with cosmology, i.e. the correspondence of inflaton propagation

with percolation problem in one-dimension. One-dimensional condensed matter systems such as wires is very suggestive
for making further analogies with cosmology. A detailed analysis on this subject was recently done in [60].

10This section was mainly inspired by D. Baumann’s notes on inflation [63].
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we know that the inflation has to come to an end, hence this symmetry has to be spontaneously broken.
This spontaneous breaking of time-translation symmetry introduces the Goldstone boson11

U ∶= t + π(x) , (3.6)

where we performed a spacetime-dependent time shift. Under time transformation t→ t+ξ, Goldstone
field transforms as π → π−ξ keeping U = t+π invariant. The Lagrangian for the Goldstone boson then
becomes

L = F (U, (∂µU)2,2U, . . .) . (3.7)

At first order in energy, the Lagrangian can be written as

L = Λ4(U) − f4(U)gµν∂µU∂νU , (3.8)

where Λ(U) and f(U) are free functions. In order to cancel the linear terms (tadpoles) from the action,
we fix these coefficients by the de Sitter background H(t),

Λ4 ∶= −M2
pl(3H2 + Ḣ) and f4 ∶=M2

plḢ , (3.9)

and get the Lagrangian
L =M2

plḢg
µν∂µU∂νU −M2

pl(3H2 + Ḣ) . (3.10)

This Lagrangian is equivalent to the slow-roll inflation Lφ introduced in Section §2.3.4 with φ = ˙̄φ(t+π)
and V (φ) = M2

pl(3H2 + Ḣ). In fact in this formalism, the Goldstone boson π becomes an order
parameter as it parametrises the field of fluctuations in the ‘clock’ measuring time during inflation
π ∼ δt. This is analogous to spontaneous symmetry breaking in condensed matter systems, where the
spatial symmetry is spontaneously broken in the direction of growth. In condensed matter systems,
symmetry breaking is induced by some external mechanism (e.g. applied voltage). In the context of
inflation, symmetry is spontaneously broken due to the fact that inflation comes to an end. While
in inflation we have spontaneously broken time diffemorphisms, in condensed matter physics, it is the
spatial diffeomorphisms that are spontaneously broken. This duality in time and space between EFT
of inflation and condensed matter physics is an exciting observation.

Decoupling from gravity

We began this chapter by discussing the success of any quantum scale analogy between cosmology and
condensed matter physics would depend on how well one can describe a local degree of freedom.12 This
is a complicated issue and is central to most contemporary research in theoretical physics. Here, we
consider EFT of inflation as a way to avoid this problem. We begin with the observation that due to
Noether’s theorem, Goldstone boson has two distinctive properties. First, the energy of the Goldstone

11The Noether’s theorem tells us that ‘for every symmetry global continuous symmetry of the action, there exist a
conserved current jµ, with

∂µj
µ
= 0 . (3.4)

The Goldstone’s theorem states that the spontaneous breaking of a global continuous symmetry leads to a massless
Goldstone boson π. Goldstone modes ∣π⟩ are obtained by performing symmetry transformations on the ground state
with a spacetime dependent transformation parameter

U = eiπ(x)/fπ , where π ∶= πaT a . (3.5)

12Throughout this work we avoided theories of information entropy and entanglement complexity that often make
attempts to better describe or answer this issue. In fact most of the recent research has completely abandoned the use
of locality or even spacetime. Since condensed matter physics is basically a boundless field, these theories are also well
within the range of condensed matter physics. Here, we we remain in the more phenomenological side of the picture and
not discuss these theories.
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must go to zero in the limit
lim
p→0

E(p) = 0 , (3.11)

where p is the 3-momentum. This can be used to show that Goldstone bosons are massless. The next
property is that the massless-ness of the Goldstone boson can be extended into all interactions in the
limit p → 0 (see for a review [12, 64]). For the effective field theory of inflation (see Section §2.5) this
constitutes to the decoupling limit where Mpl → 0 and Ḣ → 0 while holding M2

pl∣Ḣ ∣ ≫ H4 fixed. In
doing so, we completely decouple the Goldstone boson from gravity! This property indeed makes the
EFT of inflation formalism very attractive for considering condensed matter phenomena. In the next
section we will review the applications of stochastic potentials in inflation.

3.4.3 Random potential
Lastly in this section, we will review the coarse-grained stochastic contribution of some fundamental
microscopic physics in the subhorizon dynamics of the early Universe. This is realised as a stochastic
potential coupled to the fields during inflation (see e.g. [39, 40, 65]). At the fundamental level, this
contribution may be unavoidable considering a string theory landscape with very large number of
moduli (see e.g. [66–68]), or a theory with multiple fields and complicated couplings, self-interactions,
etc., contributing to the inflation mechanism. In this aspect, these theories are analogous to condensed
matter physics where the parametrisation of the stochasticity is the ubiquitous first step in most
quantitative consideration. Moreover, this analogy becomes more apparent once we consider inflaton
propagation as a particle propagation in a condensed matter system. We demonstrate this in Figure
3.1. From an EFT of inflation perspective Goldstone boson can easily be thought as similar to an
electron in a one dimensional wire. The stochastic contribution can then be thought as impurities on
the path of inflaton. In what follows, we will give one example of an inflationary model with similar
formalism, the trapped inflation [69].

Trapped inflation

In trapped inflation [69], one has a mechanism in which inflaton dumps up its kinetic energy into
production of other particles while rolling down a steep potential. Similar phenomena was originally
studied under (p)reheating scenarios [2, 61, 70, 71] which has been central to the contemporary research
in condensed matter physics as well as early Universe cosmology (see §3.3.2). This mechanism can be
realised by considering a coupling term in the Lagrangian

1

2
g2∑

i

(φ − φi)2χi , (3.12)

where φi represents the points on the inflaton’s path where the corresponding particles χi, become
very light and are produced. The Lagrangian describing the this mechanism is written as

L = 1

2
∂µφ∂

µφ − V (φ) + 1

2
∑
i

(∂µχi∂µχi − g2(φ − φi)2χ2
i ) + . . . , (3.13)

and the expectation value of the number density of produced particles χi is given as [69]

nχ(t) ≃
g3/2

(2π)3
(φ̇i)3/2a(ti)3

a(t)3
, (3.14)

where φ(ti) = φi and the dilution of particles due to inflation is accounted for with the scale factor
a (also see [61]). This process can be thought to be analogous to localisation phenomena due to
impurities. Quite similarly, particle production would slow the inflaton φ as it propagates through
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,

Figure 3.1: In this figure we represent the inflaton as it propagates downwards in a disordered medium.
In many cases, the impurities on the path of inflaton is considered to have a statistical effect. This is
realised by introducing complicated potential terms and/or coupling inflaton field to other fields. In
the latter case this may result in particle production. These particles would in turn be diluted due to
exponential expansion of space. This effect may also serve to slow inflaton as it propagates through
the slope.

the impurities.13 The duality between particle production in the early Universe and localisation was
also discussed in a recent paper by D. Baumann et. al [60]. There the authors found for a multi-field
scenario, the variance of the total occupation number of fields after N particle production is only
weakly dependent on the number of fields. We will return to these observations later in Section §4.3.1.
Next, we will discuss one of the formalisms available to studying quenched disorder.

3.5 Tools for calculating effects of quenched disorder
In this section we will introduce one of the tools necessary to calculate propagagators for a system with
disorder, which is simply a trick for now, i.e. the replica trick.14 We will then move on to describe a
non-perturbative variational approach to calculate the system’s propagator. Our review in this section
will be limited to classical methods.

13Note that we are discussing quantum effects of considering disorder in these sections. The classical analogue was
discussed in Section §3.4.1.

14Another available method known to the author is the supersymmetry method in [72, 73] which extends to random
matrix theories (RMT) [74]. Here we will focus on the replica method instead.



3.5. Tools for calculating effects of quenched disorder 30

3.5.1 Replica trick
The replica trick was perhaps first given considerable attention in condensed matter physics with the
first developments in spin glass theories [75]. It is based on the simple identity

lnZ = lim
N→0

1

N
(ZN − 1) . (3.15)

The relevance and necessity of defining this identity is as follows: In systems with quenched disorder,
the degrees of freedom associated to the impurities are static in the time frame of systems’ degrees of
freedom (see Section §3.2.1). This means that we cannot treat the two in the same footing, i.e. the
result of taking an average of any given measure over disorder will highly vary15 and it is necessary to
average the free energy, left hand side of Eqn. (3.15), instead of the partition function itself. However
it turns out that this requires performing a logarithm on each realisation of the disorder. What replica
trick does is to create N identical copies, or replicas, of the system. In doing so, we get rid of the
logarithm and end up with a partition function for N−replica fields, ZN . Note however, at the heart
of this simple mathematical manipulation, there is the assumption that N is an integer and we are
allowed to analytically continue N → 0 which has remained a widely discussed issue since seventies,
see e.g. [76, 77]. Here, we will take the point of view that, accounting for the success of particularly
spin glass theories, it is our incapacity failing to resolve this issue rather than the invalidity of the
approach [78]. The replica method is at the centre of spin glass theories and has been a significant
part of many condensed matter theories involving quenched disorder16.

3.5.2 Replica approach
In what follows, we will introduce the so called replica field theory first introduced in [79].

Scalar Model17

Let us consider some Hamiltonian for a scalar field ϕ(x) with a kinetic, mass and potential terms

Hϕ =
1

2
∫ dDx

⎡⎢⎢⎢⎣

D

∑
µ

(∂µϕ)2 +mϕ2
⎤⎥⎥⎥⎦
+ ∫ dDx V (ϕ;x) , (3.16)

where we have taken a general D dimensional manifold for the time being. For the rest of the paper,
we will use Einstein notation, i.e. repeated indices will be summed up. The potential V (ϕ;x) is
a quenched random variable which can depend on the scalar field ϕ and also some coordinates xi.
Moreover, we assume the random potential is governed by a Gaussian distribution of zero mean. It
is common in condensed matter physics to get difference correlations for the random potential in the
form

V (ϕ;x)V (ϕ′;x′) = ∫ D[V ]P [V ] V (ϕ;x)V (ϕ′, x′)

= δD(x − x′) F (∣ϕ − ϕ′∣2) ,
(3.17)

where ϕ′ ∶= ϕ(x′) and ( ⋅ ) refers to the average over disorder. We also take the integration measure
to obey normalisation condition ∫ D[V ]P [V ] = 1 .

15Perhaps a good way to understand this is from an experimental point of view: In the presence of relatively static
impurities in a system, making a measurement of a quantity that is fluctuating with the system’s variables will itself give
largely fluctuating results. One solves this ‘measurement’ problem in statistical physics with self-averaging quantities
such as the free energy which is the logarithm of the partition function.

16e.g. See (non-linear) sigma-models for disordered electronic systems [29].
17In [79], method is applied on a D dimensional manifold represented by a N component vector field in a N +D = d

dimensional space. Here, we shall consider a scalar field instead.
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Replicated Hamiltonian

Let us now apply the replica method as in Eqn. (3.15). The replicated partition function, ZN takes
the form

ZN = ∫ D[V ]P [V ]∫ D[{ϕ}] exp ( −HN [{ϕ}]) , (3.18)

where ∫ D[ϕ] = ∫
N

∏
i
[ϕi] and Hamiltonian in replica space HN [{ϕ}] =

N

∑
a=1
H[ϕa] takes the form

HN [{ϕ}] = 1

2
∫ dDx

N

∑
a=1

[∂µϕa∂µϕa +mϕ2
a] + ∫ dDx

N

∑
a=1

V (ϕa;x) . (3.19)

From a field theoretical point of view, replicating the Hamiltonian amounts to generating N−copies of
the theory where ϕi={1,...,N} now representing a field in the Hilbert space of ith theory. The full theory
represented by the collection of all fields in the limit N → 0. The purpose of this manipulations is to
get a measure in which the effects of disorder is manifest.

Previously we have discussed the necessity of considering free energy and hence introduced the replica
method. However since our Gaussian distributed random potential in Eqn. (3.19) has zero mean,18

averaging over it will not give any information about the properties of the disordered system. In
order to solve this issue, we will now use the Gaussian characteristic of the potential term. Let us
omit writing the field dependence of the potential term for simplicity and define a correlation function
R(x − x′) in the form

V (x) = 0 V (x)V (x′) = R(x − x′) . (3.20)

The Gaussian distribution of the random potential can be written as follows

P [V ] = exp(1

2
∫ dDx∫ dDx′ R−1(x − x′)V (x)V (x′)) , (3.21)

where the integral kernel R−1(x − x′) is the functional inverse of the correlation function,

∫ dDx′′R−1(x − x′′)R(x′′ − x′) = δD(x − x′) . (3.22)

We now wish to calculate the moments of the distribution P [V ]. This is done by first computing the
generating functional

I[J] = ∫ D[V ]P [V ] exp{∫ dDx J(x)V (x)} , (3.23)

where J(x) is some external current, and observing that this expression is equivalent to

I[J] = exp{−1

2
∫ dDx∫ dDx′J(x)J(x′)R(x − x′)} , (3.24)

once the random potential is defined with Gaussian distribution as in Eqn. (3.21). Using this result
and also reintroducing the field dependence back to the correlation function in the form Eqn. (3.17),
we can write the random term in our replicated Hamiltonian simply as,

HN [{ϕ}] = 1

2
∫ dDx

N

∑
a=1

[∂µϕa∂µϕa +mϕ2
a] −

1

2
∫ dDx

N

∑
a,b=1

F (∣ϕa − ϕb∣2) . (3.25)

The perturbative treatment of the given disorder in condensed matter physics is to expand F in powers
18Even in the case of a potential with non-zero mean value, this can always be shifted to zero.
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of ϕ. Up to quadratic part, this results in a free propagator Fab where [79]

Fab(k) =
δab

k2 +N2F ′(0) +
2F ′(0)

k2(k2 +N2F ′(0)) , (3.26)

which for N → 0 introduces a correction term 1/k4. Next, we will introduce a variational method in
order to go beyond the perturbative results.

3.5.3 Variational method

Variational Hamiltonian

In order to do non-perturbative calculations for such disordered condensed matter systems one uses
the variational method first introduced by Feynman in 55’ [80]. In what follows, lets consider classical
statistics and confine ourselves to a 3-dimensional manifold for simplicity. The first step is to define a
variational Hamiltonian for the theory with multiple replicas, i.e. for the action in Eqn. (3.25)

Hvar =
1

2
∫ d3x

N

∑
a=1

[∂µϕa∂µϕa +mϕ2
a] −

1

2
∫ d3x

N

∑
a,b=1

σab ϕa ϕb , (3.27)

where the variational Hamiltonian depends on the (N ×N) symmetric σab matrix also called the replica
structure. It is common the write the variational Hamiltonian by introducing the propagator

Gab(k) = [(k2 +m)I − σ]−1

ab
(3.28)

where I is the identity matrix and we have taken the Fourier transformation of the free part of the
action, i.e. k2 = ∣k∣2. Variational Hamiltonian becomes

Hvar =
1

2

N

∑
a,b=1
∫

d3k

(2π)3
ϕa(k) G−1

ab (k) ϕb(−k) , (3.29)

where we have conserved the momentum.

Saddle point approximation

Next step in the variational method is to calculate the free energy of the theory. Free energy has a
central importance in many statistical and condensed matter physics theories due to it being a self-
averaging quantity. For our purposes later in the next chapter, we shall not concern ourselves much
with this reasoning, however we will explain its importance in short here from the condensed matter
physics perspective. First, let us define the inequality [80]

F ≥ ⟨Hvar −Hn⟩var + Fvar , (3.30)

where F is the free energy of the full theory and Fvar = lnZvar . We shall first calculate the r.h.s
of this equation. Since we will then follow with a saddle point approximation ∂F /∂Gab = 0 we will
not worry with the constant terms. First term we shall calculate is the variation expectation value of
non-diagonal term in the replicated Hamiltonian ⟨HN ⟩var

⟨∫ d3x
N

∑
a,b=1

F(
RRRRRRRRRRR
ϕa − ϕb

RRRRRRRRRRR
2)⟩

var

. (3.31)
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This is done by expanding the correlation functional F in its powers and calculating the expectation
value for each term. Summarising in few steps

∫ d3x
N

∑
a,b=1

F (∣ϕa − ϕb∣2) = ∫ d3x
N

∑
a,b=1

∞

∑
n=0

F(n)
n!

∣ϕa − ϕb∣2n

=
N

∑
a,b=1

∞

∑
n=0

F(n)
n!

(2n − 1)!! ∣∫
d3k

(2π)3
ϕa(k)ϕa(−k) + ϕb(k)ϕb(−k) − 2ϕa(k)ϕb(−k)∣

n

,

(3.32)

and taking the expectation w.r.t variational Hamiltonian introduced in Eqn. (3.29)

⟨ Eqn. (3.32) ⟩var =
N

∑
a,b=1

∞

∑
n=0

F(n)
n!

(2n − 1)!!∣ ∫
d3k

(2π)3
(Gaa(k) +Gbb(k) − 2Gab(k)) ∣

n

=F̃ (∣∫
d3k

(2π)3
(Gaa(k) +Gbb(k) − 2Gab(k)) ∣) .

(3.33)

The expectation value of the free part of the replicated Hamiltonian

1

2
∫ d3x

N

∑
a=1

⟨[∂µϕa∂µϕa +mϕ2
a]⟩var =

1

2

N

∑
a=1
∫

d3k

(2π)3
(k2 +m)Gaa(k) . (3.34)

Finally, the third term involves the partition function for the variational action. This can be written
as

Zvar ∝

¿
ÁÁÀ∫

d3k

(2π)3
det[Gab(k)] , (3.35)

with which the contribution to the inequality becomes

ln{Zvar} = cvar +
1

2
∫

d3k

(2π)3
Tr[[ln{G(k)}]] . (3.36)

Combining these contributions in Eqn. (3.30) and taking a saddle-point approximation, i.e. ∂F /∂Gab = 0
we write

∂

∂Gcd

⎡⎢⎢⎢⎢⎣

⎛
⎝∫

d3k

(2π)3
(k2 +m)

n

∑
a=1

Gaa(k) − ∫
d3k

(2π)3
Tr[[ln{G(k)]]

⎞
⎠

+
n

∑
a,b=1

F̃ (∣∫
d3k

(2π)3
(Gaa(k) +Gbb(k) − 2Gab(k))∣)

⎤⎥⎥⎥⎥⎦
= 0.

(3.37)

If we take the derivation in the form

∂Gab(k)
∂Gcd(k′)

= δ3(k − k′)δabδbd , (3.38)

we arrive at the final result

σab = 2F̃ ′
⎛
⎝
∣∫

d3k

(2π)3
(Gaa(k) +Gbb(k) − 2Gab(k))∣

⎞
⎠

a ≠ b

σaa = −
N

∑
b(≠a)

σab ,

(3.39)
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where F̃ ′(x) = ∂F̃(x)/∂x . Above equations, along with the definition of the propagator in Eqn.
(3.28) are the saddle point equations. With this definition of the replica structure, G(k) becomes the
variational ansatz for the full Green’s function of the system. In this representation, σab mimics the
irreducible self energy, Σ(t,k), which is the sum of the contributions of all diagrams with two legs such
that the diagram entry cannot be separated from the exit by cutting a line of the diagram. This can
be written analytically as

G(t,k) = G0(t,k)+G0(t,k)Σ(t,k)G0(t,k)
+G0(t,k)Σ(t,k)G0(t,k)Σ(t,k)G0(t,k) + . . .

= G0(t,k)+G0(t,k)Σ(t,k)G(t,k),
(3.40)

which has the solution
G(t,k) = (G−1

0 (t,k) −Σ(t,k))−1. (3.41)

In short, replica approach and variational method together correspond to the self-consistent Hartree
approximation. It is perhaps appropriate now to discuss the significance of this method in condensed
matter physics. What replica field theory does is in fact to parametrise the minimum free energy
landscape. In our formalism, we have seen that the replicated potential term in the Hamiltonian, as
in Eqn. (3.25), is attractive. This means that the replicated fields attract one another towards the
minimum free energy state since they share the same Hamiltonian.

Replica symmetric ansatz

Finally, lets calculate the simplest approach we can take in calculating the propagator. This is to
assume full replica symmetry where the replica structure satisfies the relation

σab = σ for all a ≠ b . (3.42)

From Eqn. (3.39) and (3.42) we define the diagonal corrections as σaa = σ̃ = −Nσ. Propagator becomes

G−1
ab (k) = [(k2 +m) + σ̃] δab − (1 − δab) σ . (3.43)

We use the equality
N

∑
b=1
GabG

−1
bc = δac and the arithmetic form for the propagator Gab = Aδab +B to get

Gab(k) = [(k2 +m) +Nσ]−1
δab + [(k2 +m)(k2 +m +Nσ)]−1

σ (3.44)

In the next chapter we will derive the important object, Tr[[G(k)]], that mimics the two-point corre-
lation function of the system in the limit N → 0. With the compact notation G−1

0 (k) = (k2 +m) and
the simple full symmetric ansatz, this becomes

lim
N→0

1

N
Tr[[G(k)]] = G0(k) + σG2

0(k) . (3.45)

In the next Chapter, we will apply this formalism to inflation and calculate the corrections to the
correlation function once disorder is accounted for.



Chapter 4

Applications and Formalisms

Guideline to this chapter

In the previous chapter we introduced the analogies between condensed matter physics and early
Universe cosmology. We have discussed quenched disorder as the mechanism that gives ground to
many interesting emergent phenomena. In order to study quenched disorder in cosmology, however,
we have to first extend the available formalism. The following three sections correspond to first few
steps towards this direction. In the first section we introduce, for a system with quenched disorder,
a general expressions for the two point correlation function, which plays a central role in cosmology.
In the second section we apply a classical formalism from condensed matter physics to cosmology
and calculate corrections from quenched disorder to the correlation functions on super-horizon scales
during inflation. In the third section we take a look into the quantum field theory analogue of studying
scenarios with disorder. There, we also point out some of the common elements between studying path
integrals in cosmology and condensed matter physics. Throughout this chapter we will focus mainly
on introducing formalisms. We leave more focus on cosmology for disorder scenarios for future work.

4.1 The two-point correlation function with replicas
We begin by calculating correlation functions for a theory with replicated fields. We give a general
formalism which can both be applied to classical and quantum theories.

4.1.1 Connected n-point correlation function
The classical statistical physics (i.e. thermodynamics) is given by D-dimensional functional integrals
in which the partition function,

Z = Tr[exp{−βH}] , (4.1)

plays a central role1. In many-body quantum statistical systems, this becomes a D+1 dimensional
functional integral. In quantum field theory, the formulation is exactly same with the statistical
systems where the partition function serves as the generating functional for correlation functions in
the presence of some arbitrary source terms

Z[J] = ∫ Dφ exp{−Sφ + ∫ dx φ(x)J(x)} , (4.2)

As we discussed in the previous chapter, it is often preferable to calculate the logarithm of this value
instead. This is called free energy in thermodynamics and it is a self-averaging quantity. In the

1Trace simply means that we integrate over all microscopic degrees of freedom

35
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language of quantum theories, this amounts to using the generating functional for n-point connected
correlation functions,

W = lnZ . (4.3)

The n-point connected correlation functions are calculated via taking functional derivatives of W[J]
with respect to some source term J(x). Setting J = 0 gives the 1-point function

δW[J]
δJ(x)

RRRRRRRRRRRJ=0

= ⟨φ(x)⟩ (4.4)

where ϕ(x) ∶= ⟨φ(x)⟩ can be some average (e.g. background) value of the systems variable φ(x). The
second derivative gives

δ2W[J]
δJ(x)δJ(y)

RRRRRRRRRRRJ=0

= ⟨T{φ(x)φ(y)}⟩ − ⟨φ(x)⟩ ⟨φ(y)⟩ = ⟨T{φ(x)φ(y)}⟩c , (4.5)

where c stands for connected correlation function. The expression T{. . .} represents the time-ordering
operator for quantum fields. We will omit showing this explicitly in the following expressions for
simplicity, though it should be assumed to exist if the theory is considered quantum. In the next
few sections we will calculate the two-point correlation function by simply promoting our formalism
introduced in Section §3.5 to 3 + 1 dimensions in Minkowski spacetime gµν = diag(+,−,−,−). Instead
of the Hamiltonian, we take the action and use the 4-vector x = (t,x) .

4.1.2 Replica Trick
In the presence of disorder, we are interested stochastic average2 of the generating functional

W = ln{Z[J]} . (4.7)

Let us use a variation of the replica trick introduced in the previous chapter (see also [81]),

δn

δJ(x1)δJ(x2) . . . δJ(xn)
ln{Z[J]}

= lim
N→0

N

N

δn

δJ(x1)δJ(x2) . . . δJ(xn)
ln{Z[J]}

= lim
N→0

1

N

δn

δJ(x1)δJ(x2) . . . δJ(xn)
ln{1 +N ln{Z[J]}}

= lim
N→0

1

N

δn

δJ(x1)δJ(x2) . . . δJ(xn)
ln{exp{NZ[J]}}

= lim
N→0

1

N

δn

δJ(x1)δJ(x2) . . . δJ(xn)
ln{ZN [J]} .

(4.8)

Next, we will calculate the two point correlation function using the above relation in the form:

δ2ln{Z}
δJ(x1)J(x2)

∣
J=0

= lim
N→0

1

N

δ2 ln{ZN}
δJ(x1)J(x2)

∣
J=0

. (4.9)

2As a reminder, the stochastic average is defined as

( ⋅ ) = ∫ D[V ]P [V ] ( ⋅ ) , (4.6)

where V is the stochastic potential term.
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4.1.3 Two-point correlation function
We take the generator for the correlation function in the form

ZN [{φ},J] = ∫ D[V ]P [V ]∫
N

∏
c=1

D[φc] exp{−
N

∑
a=1

S[φa] +
N

∑
a=1
∫ dxJ(x)φa(x)} . (4.10)

where ∫ dx = ∫ dt ∫ d3x. With the above definition, we can calculate the resulting connected correlation
function from Eqn. (4.5) for the theory with multiple replicas,

lim
N→0

1

N

δ2 ln{ZN}
δJ(x1)J(x2)

∣
J=0

= lim
N→0

1

N

⎡⎢⎢⎢⎢⎣
⟨
N

∑
a

φa(x)
N

∑
b

φb(y)⟩
ZN

− ⟨
N

∑
a

φa(x)⟩
ZN

⋅ ⟨
N

∑
b

φb(y)⟩
ZN

⎤⎥⎥⎥⎥⎦
(4.11)

where ⟨. . .⟩ZN indicates that we are to calculate a path integral with respect to replicated partition
function ZN as shown before. We write this explicitly for J = 0,

lim
N→0

1

N

⎡⎢⎢⎢⎢⎣
⟨
N

∑
a

φa(x)
N

∑
b

φb(y)⟩
ZN

− ⟨
N

∑
a

φa(x)⟩
ZN

⋅ ⟨
N

∑
b

φb(y)⟩
ZN

⎤⎥⎥⎥⎥⎦

= lim
N→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
⎛
⎝
N

∑
a=1

φa(x)
⎞
⎠
⋅
⎛
⎝
N

∑
b=1

φb(x)
⎞
⎠

exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

(L2)

− 1

ZN
2 ∫

N

∏
c=1

D[φc]
⎛
⎝
N

∑
a=1

φa(x)
⎞
⎠

exp

⎧⎪⎪⎨⎪⎪⎩
−
N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scales with ∝N

⋅∫
N

∏
d=1

D[φd]
⎛
⎝
N

∑
b=1

φb(x)
⎞
⎠

exp

⎧⎪⎪⎨⎪⎪⎩
−
N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scales with ∝N

⎤⎥⎥⎥⎥⎦

(4.12)

It makes sense to study the terms in the above equation (4.12) in terms of their behaviour in the limit
N → 0.3 The term in the third line of the above equation scales as ∝ N2 and hence approaches zero
in the limit N → 0 in O(N). The term in the second line requires further attention. Observing the
expression in the second line of equation (4.12), we can see that it can be separated into two parts,
one with identical replica indices for both replica fields in the numerator, and one with unequal replica
indices. For simplifying the notation, we will use the fact that the path integral is independent of the
exact value of the replica indices, but focus on the cases where the replica indices are the same or
different at the limit N → 0.

L2 = lim
N→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
⎛
⎝
N

∑
a=1

φa(x) φa(y)
⎞
⎠

exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scales with ∝ N

+ 1

ZN ∫
N

∏
c=1

D[φc]
⎛
⎝
N

∑
a≠b

φa(x) φb(y) )
⎞
⎠

exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

scales with ∝ N(N−1)

(4.14)

3 Before looking in these terms in equation (4.12) in more detail, it should be understood that the expectation values
of the replica fields w.r.t the theory with replicated fields, i.e. ZN , are equal to the expectation values of the theory with
single scalar field (without replicas), independently of the replica indices at the limit N → 0 by construction of the theory

⟨φ⟩ = lim
N→0

1

N
⟨
N

∑
a=1

φa⟩
ZN

= lim
N→0

⟨φ1⟩ZN = lim
N→0

⟨φ2⟩ZN = . . . = lim
N→0

⟨φN ⟩
ZN

. (4.13)

This is because all the replica fields are governed by the same statistical distribution. The quantum analogue of this
argument would be that the vacuum expectation values of replica fields are identical with the vacuum expectation value
of the original theory.
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In the second line of the above equality, we can easily see that there are two terms, one which approaches
to zero as N → 0 with O(N) and a term that scales as O(1) hence non-zero as N → 0. The result for
connected 2-point correlation function is then

lim
N→0

1

N

δ2

δJ(x)δJ(y) ln{ZN [{φ},J]}∣J=0 = ⟨φ(x)φ(y)⟩ − ⟨φ(x)⟩ ⟨φ(y)⟩

= lim
m→0

[⟨φ1(x)φ1(y)⟩ZN − ⟨φ1(x)φ2(y)⟩ZN ] ,
(4.15)

where in the first line, we have used the previous Eqn. (4.5) for 2-point connected correlation function
in terms of 1- and 2-point correlation functions. We can now relate the correlation functions in the
theory with replicated scalar fields with the correlation functions in the original theory by,

⟨φ(x)φ(y)⟩ = lim
N→0

⟨φ1(x)φ1(y)⟩ZN

⟨φ(x)⟩ ⟨φ(y)⟩ = lim
N→0

⟨φ1(x)φ2(y)⟩ZN .
(4.16)

Hence the general 2-point correlation function ⟨φ(x)φ(y)⟩ may be represented as

G(x, y) ∶= ⟨φ(x)φ(y)⟩ = lim
N→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
N

∑
a=1

φa(x) φa(y) exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (4.17)

Finally, using relations derived in the previous section, the stochastic average can simply be pushed
inside the path integral, simply taking the form,

lim
N→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
N

∑
a=1

φa(x) φa(y) exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= lim
m→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
N

∑
a=1

φa(x) φa(y)∫ D[V ]P [V ] exp

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
b=1

S[φb]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
,

(4.18)

where replacing the relation ZN = ∫
N

∏
c=1
D[φc] exp{−SN} , we arrive at the result

G(x, y) ∶= ⟨φ(x)φ(y)⟩ = lim
N→0

1

N

⎡⎢⎢⎢⎢⎣

1

ZN ∫
N

∏
c=1

D[φc]
N

∑
a=1

φa(x) φa(y) exp

⎧⎪⎪⎨⎪⎪⎩
− SN [{φ}]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (4.19)

4.1.4 Full Replica Propagator
It is tempting to consider the expression in equation (4.19) through defining a full ‘replica’ propagator
in the form of a N ×N matrix,

Dab(x, y) =
1

ZN ∫
N

∏
c=1

D[φc] φa(x) φb(y) exp

⎧⎪⎪⎨⎪⎪⎩
− SN [{φ}]

⎫⎪⎪⎬⎪⎪⎭
, (4.20)

where the stochastic average of the general two-point correlation function becomes

G(x, y) ∶= ⟨φ(x)φ(y)⟩ = lim
m→0

1

N

N

∑
a=1

Daa(x, y)

= lim
N→0

1

N
Tr[[D(x, y)]] ,

(4.21)
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where we used the notation D for the matrix. Moreover, observing equations (4.14) and (4.16), we can
also write

⟨φ(x)⟩ ⟨φ(y)⟩ = lim
N→0

1

N(N − 1)
N

∑
a,b=1

a≠b

Dab(x, y). (4.22)

The power spectrum in three spatial dimensions is defined as

P (k) ∶= k3

2π2
G(k) , (4.23)

where k = ∣k∣. We assumed power spectrum is independent of time as well as isotropic and homogeneous.
In our case this equation will become

P (k) = lim
N→0

k3

2Nπ2
Tr[[D(k)]] . (4.24)

4.2 Super-horizon dynamics
In this chapter, we will apply the replica formalism to classical super horizon dynamics during inflation.
We will begin by calculating corrections to the two-point correlation function for an unperturbed scalar
field in de Sitter space with disorder. This approach was first taken in [81–83] where the authors applied
these methods to calculate correlation functions for a test-field in stochastic inflation setting. Here we
extend this analysis by considering a more general inflationary scenario and also metric fluctuations.

4.2.1 Physical description
In the case of quenched disorder, we will need a more involved approach to calculate corrections as
introduced in the previous sections. The idea of classically sourced disorder on super-horizon scales
was introduced in Section §3.4.1. Namely, here we consider the effect from long-wavelength super-
horizon modes becoming quenched and acting as impurities on the modes around the horizon crossing.
Moreover, we will be assuming the modes around the horizon can also be treated classically. Our
approach is similar to stochastic inflation in formalism while differs considering the physical picture.4

In what follows, we begin our analysis by first considering a flat FRW background.

4.2.2 de-Sitter Space and a Toy Model
In the basic calculations of the previous section we assumed a Minkowski spacetime. In order to
promote our formalism into a more cosmological one, let us begin by considering a simple action
with a minimally coupled massless scalar field with a kinetic term and a stochastic potential term.
Throughout we take Planck mass MPl = (8πG)−1/2 and units c = h̵ =MPl = 1 .

S[φ] = 1

2
∫ d4x

√−g [R − (∂µφ)2 + 2V (φ;x)] . (4.25)

where we take the metric as
gµν = diag(1,−a(t),−a(t),−a(t)) (4.26)

with a(t) = exp(Ht) and Ḣ ≃ 0.
4In contrast to our approach, in stochastic inflation one considers the coarse-grained effect of sub-horizon quantum

fluctuations realised as ‘noise’ on the dynamics of long-wavelength modes. This also differs considering the treatment of
the stochastic effect.
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Replicated action

Following the formalism introduced in the previous sections, we write the action as

SN [φ] = 1

2
∫ d4x a3(t)

N

∑
a=1

[R − (∂µφa)2 + 2V (φa;x)] . (4.27)

The stochastic average of the replicated generating functional can be written as

ZN = ∫ D[V ]P [V ]∫
N

∏
a=1

D[φa] exp{−
N

∑
b=1

SN [φb]} , (4.28)

where we have once again Wick-rotated to Euclidean action. The next step requires a little more care.
We should express the variance of the stochastic potential, i.e V 2. We begin by making the following
assumption: The stochastic potential depends exclusively only on time, i.e.

V (φ,x) → V (φ, t) . (4.29)

At this point, we will not discuss the time dependence of the correlation function for the random
potential and simply write the form in replica space as5

V (φa, t)V (φb, t′) = C(t, t′) F[habφaφb] , (4.31)

where we used a mean field like notation in writing φa = φa(t,x) with a = {1, . . . ,N} . Moreover, the
functional F (not to be mistaken with free energy F ) depends on the couplings of the replica fields
and a some metric hab on the scalar replica field space. The generating functional then becomes

ZN = ∫
N

∏
c=1

D[φc] exp

⎧⎪⎪⎨⎪⎪⎩
− 1

2

N

∑
a=1
∫ dt a3(t)∫ d3x ( R − (∂µφa)2 )

+
N

∑
a,b=1
∫ dt a3(t)∫ dt′a3(t′)∫ d3x C(t, t′) F[habφaφb]

⎫⎪⎪⎬⎪⎪⎭
.

(4.32)

Note that the replicated potential term is attractive since the all replica fields share the same action.
Let us begin simply by assuming short-range temporal correlations

C(t, t′) ∼ δ(t − t′)λ(t) . (4.33)

Generating functional takes the (compact) form,

ZN = ∫
N

∏
c=1

D[φc] exp

⎧⎪⎪⎨⎪⎪⎩
R − 1

2

N

∑
a=1
∫ dt a3∫ d3x (−(∂µφa)2 + λ a3

N

∑
b=1

F[habφaφb])
⎫⎪⎪⎬⎪⎪⎭
, (4.34)

where we have omitted showing time dependence of the scale factor a(t) = a and λ(t) = λ . The basic
structure of our formalism is essentially the same with that of multi-field inflation [84–86]. We can
simply write the scalar part of the action as

SNφ = 1

2

N

∑
ab
∫ dt a3∫ d3x (−δab(∂µφa∂µφb) + λ a3 F[habφaφb]) . (4.35)

5It should be noted, however, that the most widely used definition for the variance of the stochastic potential is

V (φ)V (φ′) ∝ δ(φ − φ′) . (4.30)

Our formalism intents to be more general in accounting for the full spectrum of couplings among replica fields.
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Background
Let us calculate the inflationary constraints on the replica potential for this model (i.e. λF), assuming
spatially flat FRW universe (also see Chapter §2) and homogeneity for the replica scalar fields φa = φa(t)
with the metric

ds2 = dt2 − a2δijdxidxj . (4.36)

Scalar replica fields give a set of Klein-Gordon equations akin to that of multi-field scenarios [87]

φ̈a + 3Hφ̇a − λ a3 δab∑
b

F,φb = 0 , (4.37)

where we simplified our notation with

F[habφaφb] ∶= F ,
N

∑
b=1

∶= ∑
b

, F,φa = ∂F/∂φa , φ̇a = dφa/dt , also H = ȧ/a . (4.38)

In order to inflation to happen at all, our scalar potential must be sufficiently flat hence it must satisfy
the following conditions,

(F,φa)2 ≪ (F)2 and
√
F,φaφb ≪ F . (4.39)

Following the above condition, we also assume slow roll dynamics, φ̈a ≪ 3Hφ̇a . Hence in addition to
Eqn. (4.39) we have the slow roll condition

3Hφ̇a ≃ λ a3 δab∑
b

F,φa . (4.40)

However, we note that the background equations we calculate in this formalism are not physical since
we actually are modelling for a single scalar field coupled with gravity driving inflation, not multiple
fields. Moreover, any measurable physical quantity will be the limiting case where we take the number
of replica field to zero N → 0. While our replica fields are not real objects, they are nevertheless
realisations of the actual disordered inflationary universe and it is clear that they have to (more or
less) satisfy inflationary conditions. Hence in a technical way, they are representative of the ‘background
distribution’. This is why calculation of the background in this way is not for vain, it constrains our
replicated system.

4.2.3 Variational Method
Previously we calculated the two-point correlation function as the trace of what we called the full
replica propagator Dab, which is a N ×N matrix. We will now use the Feynman variational method
introduced in Section §3.5 to approximate the full replica propagator Dab with an a priori unknown
N ×N matrix, Gab → Dab, non-perturbatively. We will use the calculations in the previous section to
derive replica structure.

Variational Action
The machinery is essentially the same as introduced with the exception that we have used a more
general formalism here. First, we introduce our variational ansatz in the compact form as

SNvar[φ] = ∫ dt a3∫ d3x ( G−1
ab φ

aφb ) , (4.41)

and

HNvar = a3∫ d3x ( G−1
ab φ

aφb ) , (4.42)

where
G−1
ab (t,k) = G−1

0,ab(t,k) + σab , (4.43)
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and G−1
0,ab ∶= δabG−1

0 (t,k) is the propagator for the free part of the action.

Saddle Point Approximation

Previously we introduced the free energy inequality

F ≥ ⟨SNvar − SN ⟩Hvar + Fvar , (4.44)

where F is the free energy of the full theory and

Fvar = lnZNvar . (4.45)

The expectation value shown with ⟨ ⋅ ⟩Hvar is taken with respect to time-dependent Hamiltonian HNvar.
Our method is to calculate the right-hand side of Eqn. (4.44) and follow with a stationarity equa-
tion ∂F /∂Gab = 0.6 In order to do this we have to calculate the following expectation value with
respect to variational action

∫ d3x ⟨F[habφaφb]⟩Hvar . (4.46)

We begin by making the observation the for the generic case in Eqn. (4.46), the functional form inside
the expectation value can be written as

F [hab∫
k′
∫

k
e−i(k+k

′)⋅xφakφbk′] . (4.47)

Performing the spatial integral in Eqn. (4.46) and one of the integrals in phase space in Eqn. (4.47)
we make the definition

⟨F [hab∫
k
φakφb−k]⟩

Hvar
∶= F̃ [ a−3∫

k
habGab] . (4.48)

The equations are essentially the same. In order to calculate the replica structure σab we take the
derivate with respect to the propagator Gcd. However, the exact result will depend on the form of
the functional. The correctness of the saddle point equation relies on two conditions being satisfied,
namely the ‘free energy ’ inequality in Eqn. (4.44) and the stability at the saddle point ∂F /∂Gab = 0.
Next, we will discuss these conditions.

Saddle point conditions

The inequality in Eqn. (4.44) is satisfied if both sides of the inequality are convex. The ‘free energy’
F is convex by definition since it is a Legendre transform. Nevertheless it is worth noting that we
introduced a coarse-grained coupling term between replica fields in the ‘effective’ action, which mimics
the so called ‘coarse-grained free energy’ in O(N) symmetric field theories studied most extensively in
the context of renormalisation group flow in [88–90]. There, authors show that the coarse grained free
energy becomes convex for only k → 0 (see e.g. [90]). Proving the convexity of the general effective
representations in Eqn. (4.44) with this way is beyond the extend of our work here. Instead we will
make another observation. Since we take the expectation value with respect to a positive weight
(i.e. the variational Hamiltonian), we will always underestimate the right hand side in Eqn. (4.44).
Hence this inequality will necessarily hold. This was first shown by J. Jensen in 1906 [91] and then
formalised as the variational principle in Eqn. (4.44) by R. Feynman [80].

On the other hand, the condition ∂F /∂G⋆ab = 0 is perhaps more stringent and assumes stationarity
at the point (t⋆,k⋆). This proplem was first formulated by Thouluess et. al. [92]. In our case this

6Take care to not mistake the free energy Fvar with the replica potential term F .
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corresponds to calculating the eigenvalues of the Hessian of the free energy in replica field space. We
denote this as

Mab,cd(t,k) ∝
∂2F̃ [∫k habGab]

∂Gab∂Gcd
, (4.49)

where we used a compact notation for the functional in Eqn. (4.46). The stability of the saddle-point
approximation depends on the positivity of all eigenvalues of Eqn. (4.49). It may be very demanding
to prove this relation for any given replica potential F̃ . Instead we note that in [79] G. Parisi et. al.
showed that for a fully symmetric replica structure (see Section 3.5), this is satisfied for a 3-dimensional
manifold if

F̃ [∫
k
habGab] ∝ O(Gγab) , (4.50)

with γ ≥ 1. In the rest of this section we will assume this holds in 3 + 1 dimensions as well.

4.2.4 Variational ⟨φφ⟩ calculation
In this section we will calculate the corrections to two-point correlation function of the scalar field φ
from the variational method. Since we are not taking metric fluctuations into account at this point,
our method and results are not cosmologically accurate. Our intention at this point is mainly to
demonstrate the corrections from various scenarios. In what follows, we will make the simplifying
assumption of full replica symmetry, i.e. σ ∶= σab for a ≠ b and σ̃ ∶= σaa. Moreover we will assume the
form for the two point function

⟨φkφ−k⟩⋆ = G(t⋆,k) ≃ lim
N→0

1

N
Tr[[G⋆ab]] (4.51)

where
Gab(t,k) = [ G0(t,k)−1 + σaa ]−1δab + [ G0(t,k)−1( G0(t,k)−1 + σaa)]−1σ . (4.52)

where the symbol ( ⋆ ) signifies that we have ‘fitted’ σab to true propagator D(t,p) with the saddle point
equation ∂F /∂Gab(t⋆,k) at the given coordinates k⋆, t⋆. The parameter G0(t,k) is the propagator
for the free part of the original action in Eqn. (4.25). In order to calculate the correction from σ⋆ab, we
must first make an ansatz on the coupling term in Eqn. (4.31).

Monomial Stochastic Potentials

Let us begin by considering the well studied inflationary scenario where one considers a potential in
the form

V (φa, t) = Vδ φna , (4.53)

where Vδ is some stochastic mass term satisfying Vδ = 0 and V 2
δ (t) ≠ 0 , coupled to some (integer) power

of the fields. Once again, the difference in our analysis is that the stochastic term is quenched. In order
to calculate non-perturbative results, we will now discuss the form of the functional F̃ . Following the
notation in Eqn. (4.31), we make the following ansatz

F ∶= F[(φaφb)n] and C(t, t′) ∶= V 2
δ (t) δ(t − t

′) (4.54)

where comparing to our previous compact notation, we have hab ∶= 1 and λ(t) ∶= V 2
δ (t). We will omit

showing the time dependence of the latter in what follows. We begin by noting

F̃ ∶= F̃ [a−3∫
k
Gab] (4.55)

and
∂F̃
∂G⋆cd

= a−3δ(t − t⋆)δacδbd × F̃ ′ [a−3∫
k
Gab] , (4.56)
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where we omitted a trivial p-integral in the form ∫p δ3(p−k⋆) which comes from the derivative of the
argument of the functional

∂Gab(t,p)
∂Gcd(t⋆,k⋆)

∶= δ(t⋆ − t)δ3(k⋆ − p)δacδbd , (4.57)

where in what follows we will omit the ( ⋆ ) symbol in the momentum coordinate k for simplicity of
notation. Moreover, we denote

F̃ ′[χ] ∶= ∂F̃[χ]/∂χ . (4.58)

Applying our formalism derived in the previous chapter, we arrive at the expression for the replica
structure

σ⋆ab = a⋆3λ⋆F̃ ′[a−3
⋆ ∫k

Gab] a ≠ b . (4.59)

where a−3
⋆ from Eqn. (4.56) cancels three powers from a⋆6 and a⋆ ∶= a⋆ for clarity of notation. Following

our previous arguments, lets first assume the functional F̃ has the form

F̃[χ] ∝ χ1+n/(1 + n) ,
F̃ ′[χ] ∝ χn .

(4.60)

Using the above relations in Eqn. (4.59), we get

σ⋆ab = +a⋆3λ⋆ ( a
−3
⋆

2π2 ∫ dk k2Gab(t⋆, k))
n

a ≠ b , (4.61)

where we assumed the propagator for correlations among replica fields depends on the amplitude of
the phase vector ∣k∣. Next, we make the observation that in the limit N → 0

lim
N→0

σ⋆aa = +a⋆3λ⋆ ( a−3
⋆

2π2N
∫ dk k2 Tr[[Gab(t⋆, k)]])

n

, (4.62)

and from Eqn. (4.21) we know that the above expression is equivalent to

lim
N→0

σ⋆aa = +a⋆3λ⋆ ( a
−3
⋆

2π2 ∫ dk k2 G(t⋆,k))
n

, (4.63)

where we see that the contribution from the diagonal elements scale asO(N)(1) in the limitN → 0 hence
we cannot ignore them in our calculation. Next, we make the fully replica symmetric anzats, σab = σ
where we write

Gab(t⋆,k) = [ G0(t⋆,k) + σ⋆aa ]−1δab + [ G0(t⋆,k)( G0(t⋆,k) + σ⋆aa)]−1σ⋆ . (4.64)

Finally by using Eqn. (4.21), we get

G(t⋆,k) = lim
N→0

1

N
Tr[[Gab(t⋆,k)]] =[ G0(t⋆,k)−1 + a⋆3λ⋆σ̃⋆ ]

−1

+ σ⋆[ G0(t⋆,k)−1( G0(t⋆,k)−1 + a⋆3λ⋆σ̃⋆)]
−1
.

(4.65)

where

σ̃⋆ ∶= ( a
−3
⋆

2π2 ∫ dk k2 G(t⋆,k))
n

. (4.66)

We now return to our initial discussion of the physics that sources the quenched disorder on super-
horizon scales. Previously we argued that super-horizon disorder effects the modes around the horizon
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crossing due to longer modes, which have long passed the horizon, have become quenched. Hence,
we expect the faster modes to be effected in a relatively narrow ‘window’ of momentum around the
horizon crossing. In order to realise this, we take our upper limit to be the horizon crossing kh.c.. We
write

σ̃⋆ ≃ (a
−3
⋆ H

⋆

4π2 ∫
kh.c.

Λ
dk k−1+ε)

n

, (4.67)

where we introduced small deviation parameter from scale invariance ε ∶= ns−1 ≪ 1 (see Section §2.4.3).
We observe that this term contributes corrections that increase at most logarithmically in 1/k for ε = 0
with a high-momentum cut-off at most at the horizon crossing.

Difference correlation

Replica method was first derived for spin glass models. Spin glass models can crudely be though
of disordered Ising models in two-dimensions, where the strength of the couplings between various
degrees of freedom is collected from a probability distribution. In replicated spin glass models, each of
N realisations is represented by collection of spins situated in an L ×L lattice much like a realisation
of various atoms in a crystal. An essential physical parameter, first suggested in [75] and then brought
up to sophistication by G. Parisi [93, 94], is the order parameter, ρab which parametrises a ‘distance’
measure among realisations in the form ρab ∼ ∑ij[sa(i) − sb(j)] where {i, j} represents the lattice
points of various spin degrees of freedom. From a field theory perspective, this amounts to considering
a potential scaling with a ‘distance measure’ between field realisations, or in other worlds, a difference
correlation [79].

For our purposes, a difference correlation introduces a power law scaling with respect to the difference
between the amplitudes of two realisations of classical super-horizon wave-modes φa and φb at equal
time. Let us begin by parametrising the dependence of the functional part of the potential, F , in
spatial coordinates. In the simplest form, this object will be as follows,

F ∶= F[(φa − φb)2] , where C(t, t′) ∶= δ(t − t′)λ(t) . (4.68)

We then calculate the Fourier transform of this functional and take the expectation value with respect
to variational action introduced as before. This results in the functional dependence

F̃ ∶= F̃ [∫
k
(Gaa + Gbb − 2Gab)] . (4.69)

and
∂F̃
∂G⋆cd

= a−3δ(t − t⋆)[δacδad + δbcδbd − 2δacδbd] × F̃ ′ [∫
k
(Gaa + Gbb − 2Gab)] . (4.70)

Applying the variational formalism as before, we get for the non-diagonal contributions to the replica
structure

σ⋆ab = 2a⋆3λ⋆ ( 1

2π2 ∫ dk k2(Gaa + Gbb − 2Gab))
n

a ≠ b , (4.71)

where we once again assumed the definition of the functional as in Eqn. (4.60). For the diagonal
elements we get

σ⋆aa = − ∑
a(≠b)

σab . (4.72)

We see that this time in the limit N → 0 the contribution from the diagonal elements can be neglected
and the simple form in Eqn. (4.51) holds for the fully symmetric replica structure σ⋆ab(k) = σ(k)⋆ for a ≠ b.
Moreover by simple arithmetic, we note that for the fully symmetric case we have from Eqn. (3.44) in
the limit N → 0,

Gaa(k) + Gbb(k) − 2Gab(k) ≃ G0(k) . (4.73)
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Finally using the above relations we write

σ⋆ = 2a⋆3λ⋆ ( 1

2π2 ∫ dk k2 G0(t⋆,k))
n

. (4.74)

Much like before, this effect can be observed to have at most logarithmically increasing corrections with
1/k. Moreover since the diagonal contributions (or self-couplings of replica fields) can be neglected in
the limit N → 0, replica corrections appear only on the second order in G0(t⋆, k). Shortly, we find

∆G(t⋆,k) ≃ σ⋆×G2
0(t⋆, k) , (4.75)

where the fully symmetric replica structure is given in Eqn. (4.74). Hence we see that disorder in-
troduced to single scalar field inflation in this form does not have a relevant7 correction to power
spectrum. We will finish this section with few comments.

Our calculations in this section was simply motivated by applying replica formalism and variational
method to a test field in de Sitter spacetime. In order to calculate any cosmological parameters,
we have to sophisticate our formalism. This may be done by considering the metric and scalar field
perturbations around a homogenous background. By doing so we could link our corrections to two-
point curvature perturbation spectrum which has significance in cosmology. We make an attempt for
this in the next section with various simplifying assumptions.

4.2.5 Linear perturbation & dynamics
In the previous sections we applied the so called replica field theory method to two simple scenarios.
In both, we calculated correlation functions for some classical scalar field in homogeneous de Sitter
space described with the metric in Eqn. (4.36). However, if we want to calculate any quantity that has
relevance in cosmology, we must take into account the fluctuations of the metric. In what follows, we
will study this using the methods introduced in the review Section §2.4.4.

ADM formalism with replica fields

We will introduce perturbation to the metric in Eqn. (4.36). As we discussed previously, there are
many ways to do this. We choose to do calculation by following the ADM formalism. We begin by
making the observation that the replicated action has the form of an action in Eqn. (4.35) describing
multi-field inflation [84, 95] (also see for review e.g. [85, 86])

SN = 1

2
∫ d4x

√−g (R − gµν∂µφa∂νφa + λ a3 ∑
ab

F[habφaφb]) , (4.76)

where we sum over contracted indices. The first term in the brackets is the Einstein tensor, the second
term is the canonical kinetic term and the third term is the potential term of the multi-field action.
The form of the the action for the perturbed metric in ADM formalism for single field case was given
in Eqn. (2.51). In the case of multiple replica fields, the ADM action becomes [84]

SN = 1

2
∫ d4x

√−g[NR(3) − 2Nλ a3 ∑
ab

F[habφaφb] +N−1(EijEij −E2) −Ngij∂iφa∂jφa

+N−1(φ̇aφ̇a − φ̇a(N i∂iφ
a) − (N i∂iφa)φ̇a + (N i∂iφa)(N i∂iφ

a))] .
(4.77)

where we sum over contracted indices. It is important here to note that gij is the three-dimensional
metric on slices of constant t. Next, the variation of the action with respect to Lagrange multipliers

7Here by relevant, we mean correction that scales with ∝ k−r where r ≤ 3.
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N and Ni gives the constraint equations (respectively) as in Eqn. (2.53)

−gij∂iφa∂jφa − 2λ a3 ∑
ab

F[habφaφb] −N−2(EijEij −E2)+

−N−2(φ̇aφ̇a − φ̇a(N i∂iφ
a) − (N i∂iφa)φ̇a + (N i∂iφa)(N i∂iφ

a)) = 0 .
(4.78)

and
∇j [N−1(Eij −Eδij)] = N−1φ̇a∂jφ

a − (N i∂iφa)∂jφa . (4.79)

In order to proceed, we now have to make a gauge choice. Since we are interested at this point with
linear perturbations around FRW background, we will use the flat gauge

gij ∶= a2(t)δij , (4.80)

in order to obtain spatially flat time slices.

Second order action
As we discussed in the first chapters, the Universe is observed to be very homogenous with only very
small deviations from homogeneity. This is realised with the next step in the perturbation theory,
which is to split our scalar fields on the flat hyper-surfaces into a homogeneous background component
and a part representing the small linear perturbations,

φa = φ̄a +Qa . (4.81)

In order to measure any cosmological observables such as correlation function of curvature perturba-
tions, we need to be able to calculate the fluctuations Q around the homogeneous background. Here,
we will describe the procedure that follows Eqn. (4.81) and will not show all the steps in calculation.
We begin by redefining the Lagrange multipliers as before, N = 1+δN and Ni = ∂iχ which become [84]

δN = 1

2H
˙̄φaQ

a , (4.82)

and

∇2χ = a2

2H
∇2 (Qa ¨̄φa − ˙̄φaQ̇

a − Ḣ
H

˙̄φaQ
a) . (4.83)

In order to write the action, one expands Eqn. (4.35) up to quadratic order in terms of linear pertur-
bations. Substituting the expressions in Eqn. (4.82) and Eqn. (4.83), one arrives at an expression of
the action for the scalar perturbations. Here we give the final result from [84]

SN2 [Q] = 1

2
∫ dt d3x a3 (∂µQa∂µQa − λ a3 F;abQ

aQb + JabQ̇aQ̇b) . (4.84)

where F;ab ∶= ∂2F/∂φa∂φb and Jab is defined as

Jab ∶=
1

a3

d
dt

(a
3

H
˙̄φa

˙̄φb) . (4.85)

In what follows we will assume Eqn. (4.85) is negligible.

4.2.6 Variational ⟨QQ⟩ corrections
First we redefine our variational action and Hamiltonian for fluctuations as follows

SNvar = ∫ dt a3∫ d3x ( G−1
abQ

aQb ) , (4.86)
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HNvar(t) = a3∫ d3x ( G−1
abQ

aQb ) , (4.87)

where in what follows, we will assume the free energy inequality in Eqn. (4.44) holds for Eqn. (4.84)
and (4.86).8

Perturbative disorder

The replica field action for linear fluctuations {Qa} around a flat FRW background satisfied by all
realisations of the replica fields {φa} in Eqn. (4.84) is a general representation of the most disorder
scenarios.9 In what follows, however, we will make the simplifying assumption that the disorder is
perturbative, namely the homogeneous background part of the replica field is same for each realisation

φa(t,k) ≃ φ̄(t) +Qa(t,k) . (4.88)

Difference correlation revisited

The general action given in Eqn. (4.84) may take a complicated form depending on the replica field
couplings realised by the functional F . Here we will make the simplifying anzats where we assume
difference correlation among replica fields,

F ∶= F[(φa − φb)2] ≃ F[(Qa −Qb)2] . (4.89)

where in the second line we used the fact that we take disorder to have a perturbative effect. Moreover,
observe that the second derivative of the functional can be written as,

F;ab =
∞

∑
n=1

F(n)
(n − 1)!

((n − 1) (φ̄2 + φ̄(Qa +Qb) − 2(Qa −Qb)2) − 2(Qa −Qb)2) (Qa −Qb)2n−2 . (4.90)

As can be seen, the above expression is constant, F;ab ∝ O(1) for n ∶= {0,1}. Hence we find that the
lowest non zero contribution from the second term in Eqn. (4.84) is quadratic in replica fields. By
making the definition

F̃δ ∶= ∫ d3x ⟨QaQbF;ab⟩var (4.91)

we see for the term in Eqn. (4.90) of first order O(1) in replica field fluctuations, this gives

F̃δ =®
LO

a−3∫
k
Gab , (4.92)

and
σ⋆ ∶= σ⋆ab = a⋆3λ⋆ for all {a, b} . (4.93)

This would give an constant additive correction to the two point correlation function which is otherwise
free from disorder

⟨QkQ−k⟩⋆ = G⋆(k) ≃ [G⋆
0(k)−1 + σ⋆]−1 + σ⋆ [G⋆

0(k)−1(G⋆
0(k)−1 + σ⋆)]−1

, (4.94)

where G⋆
0(k) = H⋆/2k3. Moreover since the fluctuations are perturbative for any given realisation,

φ̄≫ Qa, we can generalise this equation for any order in replica field fluctuations in the coupling term
8For this statement to be general, we may have to require for the fluctuations to decouple in Eqn. (4.84) from the

homogeneous background evolution for a given replica field φ̄a. In the next section, however, we will assume perturbative
disorder where this will not be an issue.

9To be exact, we should clarify that the action in Eqn. (4.84) applies to scenarios where disorder does not effect the
kinetic term in Eqn. (4.76).
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by making the simplifying approximation,

F;ab ≃ φ̄2
∞

∑
n=2

F(n)
(n − 2)! (Qa −Qb)

2n−2 =®
n≥2

φ̄2F[(Qa −Qb)2] . (4.95)

4.2.7 Disordered kinetic coupling
In the previous sections we introduced replica field approach with variational method in a simple way,
considering a limited range of scenarios. We have realised disorder as a stochastic mass-like term
coupled to a scalar field. We then applied the replica trick and calculated correlation functions by
coupling realisations where we used a saddle-point approximation to get the most suitable correction
to the free propagator. Our variational approach forced us to calculate a constant replica structure
σab which we found to have no significant effect on the power spectrum. This is since different phases
must decouple in the action so that we can calculate the variational expectation ⟨ ⋅ ⟩Hvar for a given
term quadratic in replica fields. It is tempting, however, to ask within this simple formalism, whether
one might consider a way to have a correction to the correlation functions that scales with some power
of k.10 One way to consider such a scenario is to introduce disorder as a stochastic potential coupled
to a kinetic term. Here, we will consider the following coupling

SN = 1

2

N

∑
ab
∫ dt λ a6∫ d3x F [hab

1

a2
∂iφa∂

iφb] , (4.96)

where i ∶= {1,2,3} spatial coordinates. Variational expectation value then returns

⟨SN ⟩Hvar =
1

2

N

∑
ab
∫ dt λ a6 F [a−5∫

p
∣p∣2habGab] . (4.97)

For the action in Eqn. (4.35) we get (for hab ∶= 1)

σ⋆ab(k) = a⋆λ⋆k2 F̃ ′ [ a
−5
⋆

2π2 ∫ dp p4 G⋆ab(p)] for all a, b . (4.98)

where we used the saddle point equation ∂F /∂Gab(t⋆,k) ∶= 0. Moreover, the diagonal terms are

lim
N→0

σ⋆aa(k) = a⋆λ⋆k2 F̃ ′ [ a−5
⋆

2Nπ2 ∫ dp p4 Tr[[G⋆ab(p)]] ] . (4.99)

where we have used the relations k = ∣k∣ and p = ∣p∣ as well as assuming the replica propagator depends
only on the magnitude of the vector p. Moreover in Eqn. (4.99) we used the relation

G⋆aa =
1

N
∑
a

G⋆aa =
1

N
Tr[[G⋆ab]] , (4.100)

which is true if all diagonal elements in the replica structure are the same σ̃ = σaa, or true in general for
N → 0. Finally using the relation in Eqn. (4.52) and Eqn. (4.51) we can write the replica propagator
Gab as

G⋆(k) = ( G⋆
0(k)−1 + k2 σ̃⋆)

−1
+ k2 σ̃ ( G⋆

0(k)−1( G⋆
0(k)−1 + k2 σ̃ ))

−1
, (4.101)

10Here we will make a clarification. This goal can not be achieved by introducing some spatial dependence on the
variance of the stochastic potential since this would reflect only as a constant correction to the correlation function. One
alternative approach would be to directly promote the replica structure to scale with momentum σ → σ(k) ∶= ξ(k)σ
where e.g. ξ(k) ∝ k3 and we fit for σ only. However we will be considering a more physical reason for the momentum
dependence.
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where

σ̃⋆ ∶= a⋆λ⋆F̃ ′ [ a
−5
⋆

2π2 ∫ dp p4 G⋆(p) ] . (4.102)

The results in Eqn. (4.101) show the k dependent correction to two-point function in the presence of
superhorion disorder effecting the kinetic term in a scalar field action in de Sitter spacetime.

However, so far for the kinetic consideration we have only derived some basic equations for a scalar
field in de-Sitter spacetime. In order for our calculations to represent the physics of inflation, we must
consider metric fluctuations and introduce disorder perturbatively as previously studied. We will not
attempt this as this would require a multi-field perturbation theory with a non-canonical kinetic term
as studied in [86]. Instead in the next section we will consider an alternative scenario, EFT of inflation.

4.2.8 No super-horizon treatment of EFT of Inflation?
We begin with the stating that the EFT of inflation formalism introduced in Section §3.4.2 is appro-
priate for micro-scale physics of sub-horizon fluctuations.11 Our discussion, on the other hand, involve
very long super-horizon wave modes that are frozen and have become classical which we associate as
the source of disorder. Even if we assume these modes have a stochastic effect on the faster modes
represented in the EFT formalism, we would still need to calculate correlation functions around (if
not outside) the horizon crossing where the gauge invariance, i.e. the R ∼ −Hπ correspondence, is no
longer valid. This is simply because the Goldstone modes π continue to grow outside the horizon.
Nevertheless, we will still make an attempt to justify this section by considering a window of validity
in which one can calculate the correlation functions on super-horizon scales, classically. This would
be after the horizon crossing to allow Goldstone modes to have become classical, and before too much
after the horizon crossing in order for the formalism to be still applicable. Moreover, in what follows,
we will introduce disorder to the effective action in Eqn. (2.80) as a perturbative effect generating
non-trivial spatial kinetic coupling of replica fields in the form

V (πa, t)V (πb, t′) =M4
dis(t) δ(t − t′) (∂iπa∂iπb) . (4.103)

where we consider the following effective action

SNeff = ∫ dt a3∫ d3x(−M2
plḢ (π̇aπ̇a −

∂iπa∂iπ
a

a2
) + a3M4

dis∑
ab

∂iπa∂
iπb

a2
) . (4.104)

By using the above relation in Eqn. (4.101) with σ̃⋆ = a⋆M⋆4
dis we find

⟨πkπ−k⟩ = ( G⋆
0(k)−1 + k2a⋆M⋆4

dis)
−1
+ k2a⋆M⋆4

dis ( G⋆
0(k)−1( G⋆

0(k)−1 + k2a⋆M⋆4
dis ))

−1
. (4.105)

where in this case

G⋆
0(k)−1 ∶= H2

⋆

2M2
pl∣Ḣ⋆∣

1

k3
. (4.106)

The speed of sound cs

When introducing a term like in Eqn. (4.103), it might be interesting to consider the diagonal replica
‘self-interaction’ terms for the spatial kinetic term which take the form

(−M2
plḢ + a3M4

dis)
∂iπa∂

iπa
a2

. (4.107)

11We would like to make clear for the reader, by EFT of inflation, we refer to the EFT describing microscopic physics
of inflation. Not the superhorizon EFT (see e.g. [96]) in stochastic inflation theories, which is most possibly another
reasonable setting for such classical treatment.
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Since the spatial and time kinetic terms are different, introducing disorder in this way will ‘change’
the speed of sound cs for the Goldstone modes π that is otherwise cs = 1. This is can be defined as

c2
ab ∶= δab −

a3M4
dis

M2
pl∣Ḣ ∣

. (4.108)

Using this relation, we can rewrite the action as

SNeff = ∫ dt a3∫ d3x(−M2
plḢ (π̇aπ̇a − c2

ab

∂iπ
a∂iπ

b

a2
)) . (4.109)

Finally we now relate the two-point function for Goldstone modes to the two-point correlation function
for curvature perturbations around the horizon crossing under the influence of disorder. We do this by
taking into account the change in speed of sound (for the free propagator) by rescaling the momentum
k → csk where we defined cs ∶= 1

NTr[[cab]]. We find

⟨RkR−k⟩ = (G̃−1
0 (k) + k2a⋆M⋆4

dis )−1 + k2a⋆M⋆4
dis G̃

⋆
0(k) (k2a⋆M⋆4

dis + G̃−1
0 (k))−1

, (4.110)

where

G̃⋆
0(k) ∶=

⎛
⎝

H4
⋆

2M2
pl∣Ḣ⋆∣

1

c⋆3
s k

3

⎞
⎠
. (4.111)

In Figure 4.1 we plot the deviation from the free power spectrum as a function of speed of sound in
the large k limit which scales cubically in the leading order. By expanding the relation in Eqn. (4.110)
around a small deviation from cs ∼ 1 we get

∆̃2
R(k̃) ≃ 1 + (−3 + H3

⋆

a⋆ k̃
+O[H6

⋆])λdis + (3 − 3H3
⋆

a⋆k̃
− H5

⋆

a2
⋆k̃3

+O[H6
⋆])λ2

dis + . . . , (4.112)

where
∆̃2
R(k) ∶= k̃3 P̃ (k̃) , (4.113)

and
k̃ ∶= k/H , P̃ (k) ∶= P (k)/H , 2Mpl∣Ḣ ∣ ≃ 1 , λdis ∶= 1 − c2

s . (4.114)

Moreover we normalised this expression with 2M2
pl∣Ḣ ∣ ∼ 1 and used the relationM2

pl∣Ḣ ∣ ≫H4 to collect
terms higher order in H in Eqn. (4.112). As we have seen before in Chapter §2, the disorder-free
analogue of the expression in Eqn. (4.112) is scale invariant. We see that the kinetic coupling of
disorder introduces a small constant correction along with scale-dependent corrections higher order in
H. It is apparent from Eqn. (4.112) that the deviation from scale invariance in higher orders in H
is a small and effect since our effective formalism is valid only around the horizon crossing. It might
nevertheless be interesting to calculate the deviation from scale invariance in Eqn. (4.112) with more
care. We leave this for future work. We will conclude this section with a discussion on the constant
part of the correction.

4.2.9 Discussion
In calculating classical corrections to correlation functions, we have so far limited ourselves to intro-
ducing replica method and variational approach in a simple and general way. The corrections we
calculated were scale invariant with the exception of Sections §4.2.7 and §4.2.8. In these two sections
we discussed the scenario where the kinetic term is influenced by disorder and found that the replica
structure σ(k) scales with momentum squared k2. Nevertheless, it is apparent from our results that
disorder introduced in this way is irrelevant as k →∞. However, since we are considering the effect of
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Figure 4.1: The normalised scale independent power spectrum as function of speed of sound cs. The
normalised parameter in vertical axis is scaled to satisfy the relation ∆2

R ∝ k̃3 P̃R(k̃) where k̃ ∶= k/H
and P̃R(k̃) ∶= PR(k̃)/H. Finally in this plot we attained 2M2

pl∣Ḣ ∣ ∼ 1 and used the relation discussed
in Section §2.5, M2

pl∣Ḣ ∣ ≫H4. The orange line represents the scenario with kinetic disorder while the
blue line represents the case without of disorder. This plot simply shows that the deviation from the
free case increases cubically with decreasing speed of sound cs.

disorder to influence the modes around the horizon crossing, it is worth discussing if one might have
large disorder corrections in this region. Let us begin by considering the corrections from the replica
structure calculated in Eqn. (4.65) and (4.66)

σ̃⋆ ∶=
⎛
⎜
⎝
a−3
⋆

2π2

Λ2

∫
ΛIR

dk k2 G(t⋆,k)
⎞
⎟
⎠
, (4.115)

where we have replaced the bounds of the phase integral with cut-offs with an low-momentum IR-cut-
off, ΛIR, and some high momentum cut-off Λ2. For a scale invariant spectrum, the above equation
gives a logarithmically divergent correction term in the form of

σ̃⋆ = ( a
−3
⋆

2π2
ln{ Λ2

ΛIR
}) . (4.116)

We will now consider the high-momentum cut-off. This has to be at most at horizon crossing
Λ2 ∶= kh.c. ∼ a⋆H⋆ to allow for the wave-modes to have chance to become frozen and contribute to
disorder. We note that the replica structure scales with σ̃⋆ = a−3

⋆ ln{a⋆}, hence we see that σ̃ → 0 as
a⋆ → 0. Now lets consider a replica structure in the form Eqn. (4.102)

σ̃⋆ ∶= a⋆λ⋆F̃ ′ [ a
−5
⋆

2π2 ∫ dk k4 G⋆(k) ] . (4.117)
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If we make the definition for the functional, F̃ ′[χ] ∶= χn, we get

σ̃⋆ ∶= a⋆λ⋆ (a
−5
⋆ g⋆ k

2
h.c.

2π2
)
n

(4.118)

where we used G⋆(k) ∶= g⋆k−3. The factor kh.c. is the momentum amplitude at the horizon crossing. It
is clear from the above expression that the effect of disorder rapidly vanishes for a⋆ →∞ and positive
n. We find that disorder introduced to super-horizon scales in this section is likely to remain very
small and vanish with a→ 0 and k → 0.

We complete this section with few remarks. The way we introduced disorder into the super-horizon
description of inflation was highly limited by our ability to decouple different phase modes in variational
method. This constrained us to consider only a few types of couplings and we only studied short-
range correlations between coordinates. The next step towards a more complete theory would be
to better define the variational method. We will leave this for future work. The application of the
replica method, however, is quite general and can be treated as a multi-field scenario with the total
number of fields taken to a limit at the end of calculations. The calculations that survive this analytic
continuation contribute to the physical parameters of the system. In fact, we have explicitly seen this
when calculating the replica structure throughout this section.12

4.3 Towards a quantum theory of early Universe disorder
Much like in the super-horizon scales, a common consensus on cosmological quantum theory of sub-
horizon quenched disorder does not exist. Our intention in this chapter is to review the formalisms
with which one can study the microscopic disorder in the early Universe. In what follows, we will
begin by considering perturbative treatment of disorder. We will then extend our understanding of
cosmological in-in formalism and relate it to the non-equilibrium quantum field theories that have
much relevance to the study of disorder in condensed matter scenarious. We will conclude this section
with a discussion on possible extension of the formalism introduced so far with the replica theory and
furthermore emphasise the similarities between the super-horizon classical framework introduced in
Section §4.2. We have discussed the analogies between disorder in condensed matter physics and various
phenomena in early Universe cosmology in Sections §3.3 and §3.4. In contrast to our classical super-
horizon calculations, the quantum treatment of sub-horizon dynamics is much richer with emergent
phenomena.13 Perhaps the consideration of quenched disorder effects are most appropriate shortly
after inflation, during (p)reheating since it is phenomenologically suggestive that the physics is much
less constrained with symmetries and highly non-adiabatic during this period. While in the following
sections we focus on inflationary dynamics, our discussion and formalism applies for post-inflationary
dynamics as well.

4.3.1 Perturbative treatment of disorder
In Section §4.1 we introduced the replica method in calculating correlation functions. The necessity of
replicating the system was discussed in previous sections and directly related to quenched characteristic
of the disorder. We will now return to this issue and discuss it in dept. In the presence of quenched
disorder one cannot take an average over disorder in the same footing as the system due to the
difference between the time-frames of the impurities and system’s own degrees of freedom. From a
phenomenological perspective, this is related to non-ergodicity of the system, where due to quenched
nature of the impurity, an ensemble average of the local degrees of freedom in a given volume will

12It is suggestive that within this formalism, the replica structure, which mimics the self energy for the system, shows
universality as it does not depend strongly on the number of replica realisations.

13For clarity, we point out that complexity is not necessarily a quantum phenomena. Nevertheless, we make this
statement since we are interested in quantum phenomena such as particle production and localisation due to interference,
etc.
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not be equal to the asymptotic values of the systems’ parameters reach in time. In other words, a
system with quenched disorder is in a non-equilibrium state. This brings us to the issue of making
measurements on a non-equilibrium system by simply perturbing it. By definition, if a system is in a
non-equilibrium state, even a very small perturbation, which would otherwise be followed by system’s
rapid conversion to its true ground energy state, may have much longer lasting effects on the system.
As we discussed before, this was why we applied the variational method as a non-perturbative approach
to calculate quenched disorder effects on super-horizon scales in Section §4.2. The replica structure
gave us the ability to probe the free energy landscape and calculate for the minimum free energy of
the given system. We now wish to do the same for a sub-horizon theory of disorder. In Section
§4.2, the simplicity of our calculations relied on the classical nature of the fields and the theory. In
order to consider non-equilibrium systems for quantum theories, we have to sophisticate our formalism
significantly. We will make this attempt in what follows. First, however, we will consider the simplistic
scenario where we can treat disorder perturbatively for illustrative purposes.

Annealed disorder

We will begin by considering a scenario where the disorder can be treated with perturbation theory.
This means that our system is more or less in equilibrium and shows ergodicity. Hence, here we will be
treating disorder essentially as it is annealed disorder (see Section §3.2.1). Although annealed disorder
is phenomenologically less rich than quenched disorder, it is still interesting as it can introduce noise
to the power spectrum as well as resonant features which we will discuss shortly. Since the quantum
theory of disorder is much more involved than its classical analogue, the annealed disorder case would
be a good starting point to gain some insight into the calculations. The first approach on this was taken
recently by D. Green in [97]. In what follows, we will reviewing the calculations done in [97]. There,
the authors refer to the disorder as quenched while the perturbative treatment in the rest of the work
necessarily degrades the disorder to annealed characteristic instead. Nevertheless, authors describe the
quenched characteristic as the lack of feedback between the field fluctuation and the perturbatively
introduced stochastic coupling term. By this, they refer to the fact that the stochastic potential they
introduce does not exclusively depend on spatial coordinates, hence it induces no dissipative effect
which would reflect back to the background equations of the system. This is much like the way we
introduced classical disorder in the previous section with similar motivations. Moreover, this simple
assumption allowed us to easily decouple different modes from each other and perform the expectation
value with respect to a variational Hamiltonian. However, this has no direct relation our definition of
the quenched characteristic of the disorder. Next, we will review the results in [97].

EFT of inflation formalism

Throughout this chapter and we will be mainly using the EFT of inflation formalism as it provides
a simple and general treatment of inflationary microscopic dynamics.14 We already introduced the
effective field theory formalism for inflation in Eqn. (2.80). Here, we begin by introducing perturbative
disorder with the split

M2
plḢ(t) →M2

plḢ(t) +M2
plḣ(t) and M4

2,3(t) →M4
2,3(t) +m4

2,3(t) , (4.119)

where the terms Ḣ and M4
2,3 are fixed while ḣ and m2,3 are Gaussian stochastic variables. Next, we

will give the resulting corrections on the n-point correlation functions calculated in [97]. We introduced
the in-in formalism for calculating correlation functions in Section §2.8.1. Introducing the annealed
stochastic effect to our action, the resulting perturbative 2nd order correction to n-point correlation

14Also see Section §3.4.2 for further justification when making analogies between inflation and condensed matter
physics.
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becomes

⟨Q(τ)(2)⟩ =∑
i,j

⎛
⎝

τ

∫
−∞(1−iε)

dτ1a
4(τ1)

τ

∫
−∞(1−iε)

dτ2a
4(τ2) ⟨Oi(τ1)Q(τ)Oj(τ2)⟩ Cij(τ1, τ2)

− 2Re
τ

∫
−∞(1−iε)

dτ1a
4(τ ′)

τ1

∫
−∞(1−iε)

dτ ′′a4(τ2) ⟨Oi(τ1)Oj(τ2)Q(τ)⟩ Cij(τ1, τ2)
⎞
⎠
,

(4.120)

where

Cij(τ1, τ2) ∶= (xi(τ1)xj(τ2)) , xi,j = {M2
plḣ,m

4
2,3} and Oi,j = {π̇2,−a−2∂iπ∂

iπ} . (4.121)

Throughout this chapter we will use conformal time τ ∼ − 1
aH . Moreover we assume that the fields

satisfy πk ∶= π̄kâ
†
k + h.c. and

π̄k = H

2Mpl∣Ḣ ∣1/2
1

k3/2
(1 − ikτ)eikτ , (4.122)

where â†
k is the creation operator. Finally we choose the variance of the stochastic potential term to

be [97]

Cij(τ, τ ′) = δij
M4

pl∣Ḣ ∣2

Λi
(−Hτ)p+1δ(τ − τ ′) , (4.123)

where p allows some deviation from scale invariance. The calculations are straight forward and we will
omit the details and directly give the results and follow with a discussion.

Disorder corrections from [97]

We will consider corrections from the ḣ term. This can be considered as corrections to slow roll inflation.
The calculation is done by placing the operators O1 ∶= π̇2, O2 ∶= a−2∂iπ∂

iπ and x{1,2} ∶= M2
plḣ into

Eqn. (4.120). One arrives at

∆ ⟨RkR−k⟩dis = −
H

Λ1
PR(k)

4 + (1 − p)p
2 − p cos(pπ

2
)Γ[p] (H

2k
)
p

(4.124)

where in the physical limit p→ 0 this becomes

lim
p→0

∆ ⟨RkR−k⟩dis = −2
H

Λ1
PR(k) [

1

p
+ 3

4
− (γ + ln{ k

2H
})] . (4.125)

We used the notation ⟨ ⋅ ⟩dis to indicate the averaging over disorder. It is apparent that this correction
is not entirely physical since it diverges in the limit p→ 0 and moreover the scale invariance is violated
by the finite part where we see a multiplicative logarithmic correction. We will discuss these issues
in the next section. Here, we also give the results for the trispectrum corrections in slow-roll as given
in [97]

lim
p→0

∆ ⟨Rk1Rk2Rk3Rk4⟩
′

dis =
H

64Λ1
PR(k1)PR(k3)δ(k1 + k2)δ(k3 + k4)×

⎛
⎜⎜⎜⎜⎜
⎝

−16k2
1 + 31k1k3 − 16k2

3

(k1 − k3)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
resonant excitations

+ 16(k2
1 + k2

3)
k1k3

ArcTanh(k3

k1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
varying amplitude

⎞
⎟⎟⎟⎟⎟
⎠

+ perm.
(4.126)
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      ‘
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Figure 4.2: Diagrammatical demonstration of the trispectrum in Eqn. (4.126) where the exchange
between two pairs of fields is due to the stochastic effect.

Resonance excitations and further discussion

In the previous section we have written the divergent contributions from disorder for both the power
spectrum and trispectrum calculated in [97]. This divergence is due to the delta-function in Eqn. (4.123)
where we defined the variance of the stochastic potential. The delta-function allows for arbitrarily rapid
shifts in the stochastic parameters. Stochastic parameters determine the energy at which the states
can be excited, which in return are allowed to become arbitrarily large. This is best understood with
an analogy of ‘resonance’ which have been discussed in [97–100]. We can realise this by relating the
disorder to oscillatory features. We do this by writing

xi = ∫
dω
2π
λωe

iωt , (4.127)

where ω is the comoving frequency and

C(ω,ω′) =
M4

plḢ
2

Λ1
(2π)δ(ω + ω′) , (4.128)

which gives Eqn. (4.123) in the limit p→ 0. From this equation it is apparent that disorder introduces
arbitrary fluctuations to the system. One way to compensate for this is to introduce an exponential
suppression beyond some frequency cut-off for ω > ΛL where the delta function is not a good approxi-
mation. For the two-point calculation, this results in including a factor eεLkτ where εL ∶=H/ΛL in the
path integral. With this suppression, the power spectrum in Eqn. (4.125) becomes

lim
p→0

∆ ⟨RkR−k⟩ =
1

2

H

Λ1
PR(k) [−3 − 2 ln{ε

2
L

4
}] . (4.129)

For the 4-point function, we should consider suppression terms in the form exp{1
2εLτ1∑i ki} where

ki represents the external momenta. We will conclude this section with further discussion on the the
corrections to the trispectrum in Eqn. (4.126). We have by definition forced the stochastic coupling
potential to not depend on the spatial coordinates exclusively. This resulted in no-momentum exchange
between the two pairs of fields in trispectrum representation. Nevertheless the trispectrum is irreducible
since the time dependence of the stochastic potential leads to exchange of energy. We illustrated this
diagramatically in Figure 4.2 where the variance of the stochastic term C(τ, τ ′) realises the exchange
between the field pairs. Finally the second term in large brackets in Eqn. (4.126) represents the effect
of disorder in randomly varying the power spectrum.
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Adding disorder to inflationary models
Although the perturbative characteristic of the disorder in [97] differs from our discussion in the previ-
ous sections, the formalism introduced there is nevertheless informative. Specifically from an effective
field theory perspective, the general framework of disorder allows one to consider a wide spectrum
of possible applications. In fact, the calculations reviewed in this section suggest the possibility of
simply adding perturbative disorder to inflationary models. On this note, we return shortly to trapped
inflation [69] introduced in Section §3.4.3. If we consider the effect of disorder as it randomises the lo-
cations where a particle χi is produced, this would promote the particle number density to a stochastic
quantity. Let us consider the total number density of produced particles in the form n(t) ∼ ∑i nχi(t).
With the effect of disorder, this quantity is to be collected from a probability distribution P (n; t). In
order to calculate the evolution of the total number density of produced particles n, one could then for-
mulate a Fokker-Planck equation for the probability distribution P (n; t). Similar procedure have been
considered for non-adiabatic particle production during reheating in [60]. It is indeed suggestive that
the inflationary models such as trapped inflation may prove fruitful in considering quenched disorder.

4.3.2 In-In formalism revisited
In this section we will review some of the initial steps towards going beyond the perturbation theory
and studying a larger spectrum of phenomena in relation to disorder in the early Universe. We begin
by returning to our discussion of the in-in formalism.

Review
In Section §2.8.1 we introduced the in-in formalism and have given the ‘master formula’ in Eqn. (2.97).
There, we used the operator formalism for expectation values which simplified considerably in calcu-
lating corrections to correlation functions perturbatively. In order to gain more insight into the theory,
let us start by considering a diagrammatical formalism. We will now discuss the Feynman rules for
the in-in formalism. We consider drawing all diagrams for the calculation of the expectation value
for a given term ⟨Q⟩ of Nth order in interaction. Quite different from the in-out formalism, this
time all vertices are distinguished as ‘R’ and ‘L’ due to the difference between the time-ordered and
anti-time-ordered product. Namely, the ‘R’ label represents the field propagating forward in time and
label ‘L’ represents field propagating backwards in time. We show the path integral in Figure 4.3.
For a diagram with N vertices, there will be 2N ways one can choose each vertex to be either ‘R’
or ‘L’ which would contribute either −i or +i respectively. Moreover the formalism gets even more
complicated as we consider the lines connecting these vertices to each other. We have three types of
exchange between vertices. A line connecting a two right vertices (or a right vertex to an external
line) contributes the Feynman propagator ⟨T{φ(x)φ(x′)}⟩ where as a line connecting two left vertices
contributes a propagator in the form ⟨T̄{φ(x)φ(x′)}⟩. Finally, we will have lines connecting a left
(right) vertex to a right (left) vertex which contribute the propagator ⟨φ(x)φ(x′)⟩. With this better
understanding of the in-in formalism, we will now review the path integral.

The in-in path integral
In order to go beyond perturbation theory, it is much more preferable to use the path-integral formalism
rather than the operator formalism in Eqn. (2.97). We begin by writing the path integral as given
in [20]

⟨Q(t)⟩ =∫ ∏
t′,n

dξLn(t′)√
2π

∏
t′,n

dξRn(t′)√
2π

× exp{−i∫
t

−∞
dt′ L[ξL(t′), ξ̇L(t′)′; t]} exp{i∫

t

−∞
dt′ L[ξR(t′), ξ̇R(t′)′; t]}

× (∏
n

δ(ξLn(t) − ξRn(t))) Q(ξL(t)) Ψ∗
0(ξL(−∞))Ψ0(ξR(−∞)) ,

(4.130)
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Figure 4.3: Demonstration of the in-in formalism closed time path (CTP) integral..

where the field ξ represents field fluctuations around a homogeneous background and the index n
includes all fields and their conjugates as well as spatial coordinates. The paths within the exponential
values are written as

L[ξ(t′), ξ̇(t′)′; t] ∶= ∑
a
∫ d3x Πa(t′,x)Q̇a(t′,x) −H[Q(t′),Π(t′); t′] , (4.131)

where we represent the conjugate fields as Π. Index a runs from all the fields realised in the Lagrangian.
The variable Ψ0[ξ] in Eqn. (4.130) is the vacuum wave function taken at the initial time

Ψ0[ξ(−∞)] ∝ ⟨in∣ξ(−∞)⟩ ⟨ξ(−∞)∣in⟩

= exp(− ε
2
∫

t

−∞
dt′eεt

′

∑
ab
∫ d3x∫ d3y Eab(x,y)Qa(t′)Qb(t′))

(4.132)

where ε is a positive, infinitesimal, exponentially damping factor used to make the path integral converge
once Wick rotated to Euclidean signature15. The parameter Eab is a positive-definite kernel.16 Next,
we expand the Lagrangian L into a quadratic term L0 and an interaction term −HI . The quadratic
term can be written as

L0[ξ(t′), ξ̇(t′)′; t] ∶= ∑
a
∫ d3x Πa(t′,x)Q̇a(t′,x) −H0[Q(t′),Π(t′); t′] , (4.134)

Together with the vacuum wavefunction, we can now define the free propagators of the system as

1

2
∑GR0,nn′(t′, t′′)ξRn(t′)ξRn′(t′′) ∶= ∫

t

−∞
dt′{L0[ξR(t′), ξ̇R(t′); t′]

+ iε
2
∑
ab
∫ d3x∫ d3y Eab(x,y)QRa(x, t)QRb(y, t′)}

(4.135)

and similarly

1

2
∑GL0,nn′(t′, t′′)ξLn(t′)ξLn′(t′′) ∶= ∫

t

−∞
dt′{L0[ξL(t′), ξ̇L(t′); t′]

− iε
2
∑
ab
∫ d3x∫ d3y Eab(x,y)QLa(x, t)QLb(y, t′)},

(4.136)

15This is often called the ‘iε’ prescription and explained in detail in [12].
16For a real scalar field, this is simply

E(x,y) ∶=
1

(2π)3 ∫
d3peip⋅(x−y)

√
p2 +m2 . (4.133)
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note however the sign difference between two expressions. Next, one writes the product of delta
functions in Eqn. (4.130) in terms of a Gaussian distribution

∏
n

δ(ξLn(t) − ξRn(t)) ∝ exp(− 1

ε′
∑
n

(ξLn(t) − ξRn(t)))

= exp(−∑
nn′
Cnn′(t′, t′′)(ξLn(t′) − ξRn(t′))(ξLn(t′′) − ξRn(t′′)))

(4.137)

where
Cnn′(t′, t′′) ∶=

1

ε′
δnn′δ(t′ − t)δ(t′′ − t) , (4.138)

and ε′ is yet another positive infinitesimal. The delta function serves as the integral over the so-called
boundary field which contracts the ‘R’ and ‘L’ fields in the free theory. In addition to the free part
of path integral, the interaction Hamiltonian introduces (from a diagrammatical language) lines that
connect right and left vertices to each other, e.g. iGRLnn′(t′, t′′) and also to themselves, e.g. −iGRRnn′(t′, t′′).
The G’s are determined by the condition [20]

(iG
R
0 − C C
C −iGL0 − C

)(−iG
RR iGRL

iGLR iGLL
) = (1 0

0 1
) (4.139)

where we have written GLR ∶= (GRL)T. Because the above equality must be independent of the exact
value ε′, we get the following relations

GR0 GRR = 1 , GL0 GLL = 1 , (4.140)

GR0 GRL = 0 , GL0 GLR = 0 , (4.141)

CGLL = CGRL , CGRR = CGLR , (4.142)

The first and second equations in Eqn. (4.140) are the inhomogeneous wave equation for the propagator
and its complex conjugate with solutions

GRRnn;(t′, t′′) = i ⟨T{ξn(t′)ξn′(t′′)}⟩ , (4.143)

and
GLLnn′(t′, t′′) = −i ⟨T̄{ξn(t′)ξn′(t′′)}⟩ , (4.144)

where we the n and n′ indices include all fluctuation fields and conjugates and their spatial coordinates.
Moreover, from Eqn. (4.141) we see that GRL and GLR satisfy the homogeneous analogue of wave
equations satisfied by GRR and GLL. Finally using Eqn. (4.142) and Eqn (4.138) we find

iGRLnm(t1, t2) = ⟨ξm(t2)ξn(t1)⟩ , (4.145)

and
iGLRnm(t1, t2) = ⟨ξm(t1)ξn(t2)⟩ . (4.146)

We will conclude our review of the in-in formalism with a discussion of the generating functional.17

Differently from the in-out formalism first introduced in Eqn. (4.2), we now have with boundaries at
the initial time and interaction at some return time t. Hence, we can write the generating functional
for the in-in formalism as

Z [JR, JL] = ∫ Dφ ⟨in∣φ, t⟩JR ⟨φ, t∣in⟩JL , (4.147)

17See for further discussion e.g. [101].
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where the integral of the internal part is the identity operator. This is essentially the path integral given
in Eqn. (4.130) where we now have two source terms JR and JL representing the independent ‘right’
and ‘left’ external sources with which the transition amplitudes given in Eqn. (4.147) are calculated.

4.3.3 Non-equilibrium (quantum) field theories
Throughout this work we have discussed the non-equilibrium scenario as the natural environment to
study quenched disorder. We will now take a look into state-of-the-art quantum non-equilibrium field
theories, see e.g. [62]. Here, we intend to point the reader towards future work in this area in relation to
what has been discussed in this paper. We first review the generating functional and the path integral
in non-equilibrium field theories.

The generating functional

We begin by noting that all aspects of the in-in formalism introduced so far applies directly to non-
equilibrium field theories and have central role.18 Much like in cosmology, for non-ergodic systems,
the only boundary conditions that is known about the system and can be applied are at the initial
time. Naturally in the non-equilibrium field theories, one also uses the closed time path integral given
in Figure 4.3. The generating functional for correlation functions in non-equilibrium theory is given as

Z[JL/R,R;ρ0] = Tr
⎧⎪⎪⎨⎪⎪⎩
ρ0 TC exp{ i(S[φ]+∫ d4x JR(x)φR(x) − ∫ d4x JL(x)φL(x)

+ 1

2
∫ d4x d4yφ(x)R(x, y)φ(y))}

⎫⎪⎪⎬⎪⎪⎭
,

(4.148)

where in order to make the inversely directed fields apparent we have written the external source
terms in a compact notation. The only difference this time is the third term in the exponential,
which is R(x, y).19 We will study this term shortly. First, lets further understand the formalism in
its correspondence to the in-in prescription. We begin by calculating connected two-point functions
which are essentially the G propagators we calculated previously

δ2Z[JL/R,R]
iδJR(x)iδJR(y)

∣
J,R=0

∶= GRR(x, y) + φ(x)φ(y) , (4.150)

δ2Z[JL/R,R]
iδJL(x)iδJL(y)

∣
J,R=0

∶= GLL(x, y) + φ(x)φ(y) , (4.151)

δ2Z[JL/R,R]
iδJR(x)iδJL(y)

∣
J,R=0

∶= GRL(x, y) + φ(x)φ(y) , (4.152)

δ2Z[JL/R,R]
iδJL(x)iδJR(y)

∣
J,R=0

∶= GLR(x, y) + φ(x)φ(y) . (4.153)

where we area taken the initial conditions to be Gaussian, i.e. Tr[ρ0] → 1. The expressions for G
propagators are same as introduced in the previous section.

18In non-equilibrium field theories of condensed matter physics, this formalism is called Schwinger-Keldysh.
19One may also find the term ρ0 unfamiliar. This term simply parametrises the initial conditions, namely it is

Tr[ρ0] ∶= ∫ DφLDφRΨ⋆

0(φL(−∞))Ψ0(φR(−∞)) . (4.149)

For the rest of the paper we will assume the initial conditions are Gaussian Tr[ρ0] → 1.
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Effective action

We now review the effective action in non-equilibrium quantum field theory. We begin by defining
logarithm of the partition function W, i.e. the ‘free energy’ same as in Eqn. (4.3) with the partition
function Z[JL/R,R] having different source terms. A Legendre transform with respect to these source
terms will contribute different correlation functions. More specifically, a Legendre transform with
respect to source term JL/R will give one particle irreducible effective action shown with Γ[φ]. This
object is parametrised only by the one-point function φ. A Legendre transform with respect the
bilinear source term R in Eqn. (4.148) leads to the two-particle irreducible (2PI) effective action
Γ[φ,G] parametrised by the two-point function. These are

δW[JL/R,R]
δJa(x)

∶= ⟨φa(x)⟩ , (4.154)

and
δW[JL/R,R]
δRab(x, y)

∶= 1

2
(φa(x)φb(y) +Gab(x, y)) . (4.155)

where for simplifying of the notation we omit writing the terms ‘L’ and ‘R’ for the one-point and
two-point functions. In the above equation and for the rest of this section, we will consider all one
point functions (e.g. φa) to carry either ‘R’ or ‘L’ depending on the source term as well as every two-
point function (e.g. Gab) to carry two indices with either ‘R’ or ‘L’ each as shown in Equations (4.150)
to (4.153). In order to get the standard 1PI effective action Γ[φ] from Eqn. (4.154), one sets R = 0.
For a more general theory with non-zero R, one promotes the standard expressions to correspond for
the bilinear source term. This amounts to writing [43]

G−1
0 (φ) → G−1

0 (φ) − iR , (4.156)

where we have used matrix notation for the free propagator G−1
0,ab and the source term Rab. Much

like we have done before in the classical application of variational method, one approximates the 1PI
effective action with a saddle-point approximation to find

ΓR[φ](1) = SR[φ] +
i

2
Tr ln[G−1

0 (φ) − iR] , (4.157)

where SR[φ] is the modified classical action given as

SR[φ] ∶= S[φ] + 1

2
∫ Rab(x, y)φa(x)φb(y) . (4.158)

In what follows we will take a closer look into the 2PI effective action, also in relation to our previous
calculations. The 2PI effective action is a functional of the fields φa(x) and the propagator Gab(x, y)
as given in Eqn. (4.155). One calculates this by writing

Γ[φ,G] =W [JL/R,R] − ∫ φa(x)JR/La (x) − 1

2
∫ (φa(x)φb(y) +Gab(x, y))Rab(x, y) . (4.159)

Note here the stationarity condition is given as

δΓ[φ,G]
δGab(x, y)

= −1

2
Rab(x, y) , (4.160)

which is the equation of motion for the propagator Gab. For the 1 loop expression of 2PI effective
action gives

Γ[φ,G](1) = ΓR[φ](1) −
1

2
∫ [φa(x)φb(y) +Gab(x, y)]Rab(x, y) . (4.161)
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Using this equation and also the stationarity condition in Eqn. (4.160) we arrive at the relation

δΓ[φ,G](1)
δGab(x, y)

= − i
2
G−1
ab (x, y) +

i

2
G−1

0,ab(x, y;φ) = −1

2
Rab(x, y) . (4.162)

or equivalently
G−1 = G−1

0 (φ) − iR . (4.163)

Now we write these relations back into the general equation in Eqn. (4.159) to find20

Γ[φ,G] = S[φ] + i

2
Tr lnG−1 + i

2
Tr G−1

0 (φ)G + Γ[φ,G](2) + const. (4.164)

where the second from last term represents the higher order loop expansions of the effective action.
Finally we will make an attempt to better understand the term Γ[φ,G](2). Applying a variational
approach to the expression in Eqn. (4.164) we rewrite the propagator as

G−1
ab (x, y) = G−1

0 (x, y;φ) − iRab(x, y) −Σab(x, y;φ,G) . (4.165)

where
Σab(x, y;φ,G) ∶= 2i

δΓ2[φ,G]
δGab(x, y)

. (4.166)

The propagator Σab is the proper self-energy which satisfy the relation first given in Eqn. (3.40) where
we have promoted the free propagator to G−1

0 → G−1
0 − iR. Next, we will conclude this section with a

discussion on these relations.

Discussion

By considering the effective action formalism in quantum field theory in Section §4.3.3, we have written
the expression for the proper self energy, Σab, which is a functional of the coordinates as well as the
fields. The general equation in Eqn. (4.164) is calculated following the same prescription as we had in
our classical calculations, i.e. the saddle-point approximation for the effective action and stationary
condition with respect to the full propagator of the system. In fact perhaps it is reasonable to consider
the replica approach with variational method studied in Section §4.2 as a simpler classical analogue
of the formalism introduced in this section. In Section §4.2 we begin with a single field action with
a stochastic mass-like term. We achieved the bilinear representation of field couplings by replicating
the system to N -realisations and we formulated an action for all N -realisations. At this point the
N component action is completely analogous to a multi-field action representation with arbitrary
couplings between fields as we have discussed in §4.2.5. The classical variational method introduced in
Section §4.2.3 allowed us to parametrise the contribution from the field couplings which corresponds to
the non-diagonal part of the replica ‘structure’ σab. As discussed before, σab mimicks the self-energy Σ.
Of course the action in Eqn. (4.164) does not reflect N realisations. In order to incorporate the ‘replica’
fields into this action, one only needs to add an additional index that runs through all replicas. This is
not uncommon in contemporary disordered condensed matter physics non-equilibrium quantum field
theory studies (see e.g. [102]) and allows for a rich set of possibilities where one can map the N -replica
system into some other formalism and calculate the effects from replica field couplings before taking
N → 0 or 1 depending on the details of the problem. Finally, considering the formalisms introduced
throughout this paper, we arrive at the understanding that a natural quantum treatment of quenched
disorder in early Universe cosmology may be through studying non-equilibrium variational effective
action in the in-in (or Schwinger-Keldysh) formalism.

20See also for review e.g. [43].



Chapter 5

Conclusion

Perhaps one of the more notable discoveries in theoretical physics within the last decades has been the
significance of the dualities between formalisms. From a phenomenological perspective, a duality could
correspond to mapping a dynamic system, which may be well understood in one branch of physics,
onto another. In this work, we tried to take a step in this direction and study the condensed matter
phenomena in early Universe cosmology. We have mainly focused on the mechanism of disorder as
studied in condensed matter physics. Studying the quenched character of this effect lead us to consider
alternative methods than what is currently available to early Universe cosmology. In the last chapter,
we made attempts towards establishing formalisms for calculating the effects of such phenomena. We
will now summarise our ideas.

In Chapter §3 we introduced various analogies between condensed matter physics and early Universe
cosmology. There, we had two main arguments. First, we considered inflation as a condensed matter
phenomena and made analogies between the propagation of a particle in an environment, such as in a
condensed matter system, and the propagation of the inflaton through it’s potential. In this discussion,
we focused mainly on effective field theory (EFT) of inflation which has additional properties that
further helped with our analogy. These properties include the decoupling from gravity and exact
correspondence of inflaton fluctuations with curvature perturbations at the horizon crossing. Here,
we make the observation that the EFT of inflation is indeed a suitable formalism for establishing
links with condensed matter phenomena. This has significance for the discussion in this paper and
also for the future study we suggest in this area. Our second main argument in Chapter §3 was to
introduce the phenomenological correspondence between the early Universe and the condensed matter
systems in extreme conditions. We collected these under the definition of ‘non-equilibrium’ systems.
There, we reviewed thermalisation, prethermalisation and related phenomena in relation to inflation
and post-inflationary dynamics.

From a more technical point of view, our main focus in Chapter §3 and the following chapter is disorder.
We started discussing disorder as it was discovered in mid-late 20th century. This also allowed us to
introduce the elementary notions of complexity and emergence. These have significance in our study and
constitute to our main motivation in our consideration of disorder. Especially, we studied the quenched
disorder as the facilitator of many emergent phenomena including localisation and percolation which
we discussed in Chapter §3. Next in the same chapter, we reviewed some of the contemporary efforts in
the modern condensed matter research. These consisted mainly of studying non-equilibrium systems’
dynamics which we also related to quenched disorder. One particular phenomena we mentioned was
the emergence of slow dynamics. Particularly from a phenomenological perspective, it is suggestive
that the emergence of slow dynamics may have a wide application in early Universe cosmology. With
this, and also other reasons established in this chapter, we understand that a better understanding of
disorder is important in considering some of the interesting phenomena in the early Universe. Finally
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in this chapter, we introduced a replica field theory formalism for calculating correlation functions in
disordered systems.

At the end of Chapter §3, we proceeded to suggest that the cosmology lacks an adequate formalism to
study quenched disorder during inflation. Hence in Chapter §4, we suggested ‘replica field theory’ as a
formalism to study classical disorder effects in super-horizon scales. This formalism allows us to probe
the minimum free energy landscape and estimate the self-energy in a classical field theory. We applied
this to inflation and calculated corrections to power spectrum. While at the first order these corrections
are irrelevant, it might be interesting to see if this formalism allows us to have physical signatures that
can be observable. We leave this analysis for future work. Next in Chapter §4, we made an attempt
to discuss the quantum field theory of disorder in the early Universe. There, we made two important
observations. First, we suggested the possibility of adding perturbative disorder to inflationary models.
We followed a previous attempt in developing a formalism for perturbative disorder in effective field
theories of inflation. Considering disorder as a perturbative effect on various inflationary models is
possibly an interesting approach and may turn out to be fruitful given the wide range phenomena
related to disorder. Trapped inflation is perhaps a good place to start considering such effects. We
also leave this to future work. Our second observation considers specifically the quenched disorder.
Following our discussion in Chapter §4 on the fact that the quenched disorder necessarily demands
a non-perturbative treatment, we made an attempt to consider a quantum field theory of disorder
in the early Universe which goes beyond the perturbative treatment. There, we simply pointed out
the correspondence of non-equilibrium quantum field theories and cosmological in-in path integral.
We finally arrived to the conclusion that if we are to consider studying disorder in microscopic early
Universe, non-equilibrium quantum field theories may provide the correct theoretical framework.

Throughout this paper we tried to take steps towards studying disorder in cosmology, as it is defied
in condensed matter theories. Although our work was on mainly considering formalisms, we have seen
that early Universe cosmology and specifically inflation, indeed made it possible for us to introduce
and calculate for the mechanism of disorder. Considering the classical methods studied in this work, it
would be interesting to see whether if we can improve the variational approach in estimating the free
energy in a given scenario. Considering quantum physics, it should be possible to extend the existing
models of inflation by simply introducing disorder to models’ parameters and calculate the corrections
from this effect. Finally for a complete study of disorder in the early Universe, we must work towards
extending the non-equilibrium field theories to realise the dynamics of inflation in de Sitter space. We
have seen in the replica applications of these theories that inflationary scenario can be studied with
similar condensed matter tools. It would be interesting to see to what extend this correspondence
between disorder in condensed matter formalisms and early Universe physics can be established.
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